Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Feb 2016
Inhibition of MAPK and NF-κB signaling pathways alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in Toll-like receptor 5 (TLR5) deficiency mice.
Current researches showed that TLR family plays an important role in liver fibrosis, yet the molecular mechanism by which this occurs is not fully explained. In this study, we investigated the role of TLR5 in carbon tetrachloride-induced liver fibrosis, and further examined wether TLR5 knockout attenuated tetrachloride-induced liver fibrosis by inhibiting hepatic stellate cells activation via modulating NF-κB and MAPK signaling pathways. Our results found that carbon tetrachloride induced liver function injury in WT mice with a inflammatory responses through the activation of NF-κB and MAPK signaling pathways, resulting in hepatic stellate cells activation. ⋯ Moreover, in vitro experiment of hepatic stellate cells challenged with LPS or TGF-β, further indicated that NF-κB and MAPK were involved in liver fibrosis development, leading to α-SMA expression and inflammation infiltration. However, cells from TLR5(-)(/-) may weaken phosphorylation levels of signal pathways, finally suppress progress of collagen accumulation and inflammatory responses. These results suggest a new therapeutic approach or target to protect against fibrosis caused by chronic liver diseases.