Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Dec 2017
MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt.
MiR-126, a microRNA implicated in blood vessel integrity, angiogenesis and vascular inflammation, is markedly decreased in the sera of patients with intracerebral hemorrhage (ICH). The current study aims to evaluate the potential therapeutic effect of miR-126-3p on brain injuries in a rat model of collagenase-induced ICH. Intracerebroventricular administration of a miR-126-3p mimic significantly alleviated behavioral defects 24 h after ICH, as examined by paw placement and corner tests. ⋯ In addition, miR-126-3p mimic suppressed the upregulation of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) in the perihematomal area and maintained the activation of Akt. Furthermore, in vitro assays confirmed upregulation of PIK3R2 upon knockdown of miR-126-3p in rat brain microvascular endothelial cells (BMECs), and silencing of miR-126-3p resulted in impaired BMEC barrier permeability and reversed vascular endothelial growth factor (VEGF)- and angiopoietin-1 (Ang-1)-induced activation of Akt and inhibition of BMEC apoptosis. In summary, our results suggest that exogenous miR-126-3p may alleviate BBB disruption, cerebral edema and neuronal injury following ICH by targeting PIK3R2 and the Akt signaling pathway in brain vascular endothelium.
-
Biochem. Biophys. Res. Commun. · Dec 2017
Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway.
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy with an estimated 5 year survival rate of approximately 5% of all stages combined. High potential of PDAC metastasis is a leading cause for high mortality and poor prognosis. The majority of patients present with distant metastasis at diagnosis. ⋯ The underlying mechanism is that FKN/CX3CR1 activated JAK/STAT signaling, which in turn regulated cell growth. Consistently, in vivo tumorigenesis assay validated the regulatory role of FKN/CX3CR1 in PDAC growth. Our investigation helped understanding the pathogenesis of PDAC occurrence, and demonstrated critical role of FKN/CX3CR1 in PDAC development.
-
Biochem. Biophys. Res. Commun. · Dec 2017
Effects of dexamethasone on purinergic signaling in murine mast cells: Selective suppression of P2X7 receptor expression.
Mast cells express many different purinergic receptors, including ionotropic P2X4 and P2X7, which recognize the accumulation of extracellular ATP released from activated and/or damaged cells. This results in the stimulation of mast cell functions. In this study, we investigated the effects of dexamethasone (Dex), an anti-inflammatory glucocorticoid widely used for the treatment of allergic disease, on purinergic receptor expression in mouse bone marrow-derived mast cells (BMMCs). ⋯ Functionally, treatment of BMMCs with Dex impaired the P2X7-mediated rise in intracellular Ca2+ concentration, degranulation, and ethidium uptake, a response relevant to receptor-pore formation. Finally, oral administration of Dex to C57BL/6 mice in vivo resulted in a significant decrease in P2X7 receptor expression in peritoneal mast cells. These results suggest that reduction of P2X7 receptor expression in mast cells might be one of the anti-allergic mechanisms of Dex.