Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Aug 2017
MiR-21 promotes fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis by activating IL-6 expression.
The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. ⋯ Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and hypertrophy.
-
Biochem. Biophys. Res. Commun. · Aug 2017
Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.
When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. ⋯ In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation.
-
Biochem. Biophys. Res. Commun. · Aug 2017
The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels.
TWIK-Related K+ channels (TREK), including TREK-1 and TREK-2, belong to the TREK/TRAAK subclass of two-pore domain K+ (K2P) family. The important functions of transmembrane segment 4 (M4)-glycine hinge in TREK channel gating have been characterized, but the roles of M2-hinge (the equivalent residue of M4-hinge) remain unclear. Here, by characterizing the macroscopic currents, subcellular localization and gating properties of their M2-hinge mutants (G166A for TREK-1 and G196A for TREK-2), we investigated the functions of M2-hinge. ⋯ WT-ΔpCt, a TREK-2 tandom dimer, was used to assess the function of M2-hinge in the cis-type gating of TREK-2. The sensitivities of G196A-ΔpCt to both 2-APB and ΔpHo decreased compared with WT-ΔpCt. Taken together, our results reveal that the M2-hinge of TREK channels control their macroscopic current, subcellular localization and gating process.
-
Biochem. Biophys. Res. Commun. · Aug 2017
Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.
Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. ⋯ In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC.