Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Nov 2019
Rosiglitazone ameliorates bile duct ligation-induced liver fibrosis by down-regulating NF-κB-TNF-α signaling pathway in a PPARγ-dependent manner.
Liver fibrosis is a major cause of morbidity and mortality worldwide. One of its therapeutic targets is peroxisome proliferator-activated receptor γ (PPARγ), with its ligands including rosiglitazone being tested in pre-clinical and clinical studies. However, the effects of rosiglitazone on bile duct ligation (BDL)-induced liver fibrosis and the involved mechanisms remain unknown. ⋯ Interestingly, rosiglitazone ameliorated BDL-induced liver injury in PPARγfl/fl mice but not in HepPPARγ KO mice. Mechanistically, rosiglitazone reduced BDL-induced collagen content by downregulating fibrotic related genes including transforming growth factor β1, α-smooth muscle actin and collagen type I α1, and decreased inflammation cytokine tumor necrosis factor α level by inhibiting phosphorylation of nuclear factor-κB in a PPARγ-dependent manner. Based on findings above, we demonstrated that rosiglitazone can ameliorate BDL-induced liver fibrosis in mice and confirmed its critical functions on fibrosis by regulating NF-κB-TNF-α pathway in a PPARγ-dependent manner.