Biochemical and biophysical research communications
-
Biochem. Biophys. Res. Commun. · Aug 2017
The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels.
TWIK-Related K+ channels (TREK), including TREK-1 and TREK-2, belong to the TREK/TRAAK subclass of two-pore domain K+ (K2P) family. The important functions of transmembrane segment 4 (M4)-glycine hinge in TREK channel gating have been characterized, but the roles of M2-hinge (the equivalent residue of M4-hinge) remain unclear. Here, by characterizing the macroscopic currents, subcellular localization and gating properties of their M2-hinge mutants (G166A for TREK-1 and G196A for TREK-2), we investigated the functions of M2-hinge. ⋯ WT-ΔpCt, a TREK-2 tandom dimer, was used to assess the function of M2-hinge in the cis-type gating of TREK-2. The sensitivities of G196A-ΔpCt to both 2-APB and ΔpHo decreased compared with WT-ΔpCt. Taken together, our results reveal that the M2-hinge of TREK channels control their macroscopic current, subcellular localization and gating process.
-
Biochem. Biophys. Res. Commun. · Aug 2017
Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.
Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. ⋯ In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC.
-
Biochem. Biophys. Res. Commun. · Jun 2017
Rac1 regulates sepsis-induced formation of platelet-derived microparticles and thrombin generation.
Dysfunctional coagulation aggravates clinical outcome in patients with sepsis. The aim of this study was to define the role of Rac-1 in the formation of platelet-derived microparticles (PMPs) and thrombin generation (TG) in abdominal sepsis. Male C57BL/6 mice underwent cecal ligation and puncture (CLP). ⋯ Platelet activation in vitro caused release of numerous MPs. Notably, NSC23766 abolished PMP formation in activated platelets in vitro. These findings suggest that Rac-1 regulates PMP formation and TG in sepsis and that inhibition of Rac1 activity could be a useful target to inhibit dysfunctional coagulation in abdominal sepsis.
-
Biochem. Biophys. Res. Commun. · May 2017
Structural analysis of the interaction between spiroisoxazoline SMARt-420 and the Mycobacterium tuberculosis repressor EthR2.
Inhibition of transcriptional regulators of bacterial pathogens with the aim of reprogramming their metabolism to modify their antibiotic susceptibility constitutes a promising therapeutic strategy. One example is the bio-activation of the anti-tubercular pro-drug ethionamide, which activity could be enhanced by inhibiting the transcriptional repressor EthR. ⋯ The x-ray structure of EthR2 was solved at 2.3 Å resolution in complex with a compound called SMARt-420 (Small Molecule Aborting Resistance). Detailed comparison and structural analysis revealed interesting insights for the upcoming structure-based design of EthR2 inhibitors as an alternative to revert ethionamide resistance in Mycobacterium tuberculosis.
-
Biochem. Biophys. Res. Commun. · Apr 2017
Mitochondria are devoid of amyloid β-protein (Aβ)-producing secretases: Evidence for unlikely occurrence within mitochondria of Aβ generation from amyloid precursor protein.
Mitochondrial dysfunction is implicated in the pathological mechanism of Alzheimer's disease (AD). Amyloid β-protein (Aβ), which plays a central role in AD pathogenesis, is reported to accumulate within mitochondria. However, a question remains as to whether Aβ is generated locally from amyloid precursor protein (APP) within mitochondria. ⋯ Moreover, expression of the β-C-terminal fragment (β-CTF) of APP was markedly low in the mitochondria-enriched fraction. Additionally, immunocytochemical analysis showed very little co-localization between presenilin 1 and Tom20, a marker protein of mitochondria. In view of the particularly low expression levels of BACE1, γ-secretase complex proteins, and β-CTF in mitochondria, we propose that it is unlikely that Aβ generation from APP occurs locally within this organelle.