Brain : a journal of neurology
-
Multicenter Study
Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study.
Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). ⋯ Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy.
-
See Josephs (doi:10.1093/brain/awx367) for a scientific commentary on this article. In many neurodegenerative disorders, familial forms have provided important insights into the pathogenesis of their corresponding sporadic forms. The first mutations associated with frontotemporal lobar degeneration (FTLD) were found in the microtubule-associated protein tau (MAPT) gene on chromosome 17 in families with frontotemporal degeneration and parkinsonism (FTDP-17). ⋯ The finding that the S305S mutation could be classified into two tauopathies suggests additional modifying factors. Assessment of our cases and previous reports suggests that distinct MAPT mutations result in particular FTLD-tau subtypes, supporting the concept that they are likely to inform on the varied cellular mechanisms involved in distinctive forms of sporadic FTLD-tau. As such, FTLD-tau cases with MAPT mutations should be considered familial forms of FTLD-tau subtypes rather than a separate FTDP-17 category, and continued research on the effects of different mutations more focused on modelling their impact to produce the very different sporadic FTLD-tau pathologies in animal and cellular models.
-
See Whitwell (doi:10.1093/brain/awy001) for a scientific commentary on this article. A stereotypical anatomical propagation of tau pathology has been described in Alzheimer's disease. According to recent concepts (network degeneration hypothesis), this propagation is thought to be indicative of misfolded tau proteins possibly spreading along functional networks. ⋯ Moreover, greater tau burden in the tau pathology networks was associated with more advanced Braak stages. Using the data-driven approach of an independent component analysis, we observed a set of independently coherent tau pathology networks in Alzheimer's disease, which were associated with disease progression and coincided with functional networks previously reported to be impaired in Alzheimer's disease. Together, our results provide novel information regarding the impact of tau pathology networks on the mechanistic pathway of Alzheimer's disease.
-
The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. ⋯ We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.
-
Faciobrachial dystonic seizures and limbic encephalitis closely associate with antibodies to leucine-rich glioma-inactivated 1 (LGI1). Here, we describe 103 consecutive patients with faciobrachial dystonic seizures and LGI1 antibodies to understand clinical, therapeutic and serological differences between those with and without cognitive impairment, and to determine whether cessation of faciobrachial dystonic seizures can prevent cognitive impairment. The 22/103 patients without cognitive impairment typically had normal brain MRI, EEGs and serum sodium levels (P < 0.0001). ⋯ All patients had IgG4-LGI1 antibodies, but those with cognitive impairment had higher proportions of complement-fixing IgG1 antibodies (P = 0.03). Both subclasses caused LGI1-ADAM22 complex internalization, a potential non-inflammatory epileptogenic mechanism. In summary, faciobrachial dystonic seizures show striking time-sensitive responses to immunotherapy, and their cessation can prevent the development of cognitive impairment.awx323media15681705685001.