International journal of medical informatics
-
Pneumonia is a common complication after stroke, causing an increased length of hospital stay and death. Therefore, the timely and accurate prediction of post-stroke pneumonia would be highly valuable in clinical practice. Previous pneumonia risk score models were often built on simple statistical methods such as logistic regression. This study aims to investigate post-stroke pneumonia prediction models using more advanced machine learning algorithms, specifically deep learning approaches. ⋯ The deep learning-based predictive model is feasible for stroke patient management and achieves the optimal performance compared to many classic machine learning methods.
-
Adverse events in healthcare are often collated in incident reports which contain unstructured free text. Learning from these events may improve patient safety. Natural language processing (NLP) uses computational techniques to interrogate free text, reducing the human workload associated with its analysis. There is growing interest in applying NLP to patient safety, but the evidence in the field has not been summarised and evaluated to date. ⋯ NLP can generate meaningful information from unstructured data in the specific domain of the classification of incident reports and adverse events. Understanding what or why incidents are occurring is important in adverse event analysis. If NLP enables these insights to be drawn from larger datasets it may improve the learning from adverse events in healthcare.