British journal of anaesthesia
-
Neuroanaesthesia continues to develop and expand. It is a speciality where the knowledge and expertise of the anaesthetist can directly influence patient outcome. Evolution of neurosurgical practice is accompanied by new challenges for the anaesthetist. ⋯ With the increasing popularity of awake craniotomies, there is even more emphasis on this skill. However, despite high-quality anaesthetic research and advances in drugs and monitoring modalities, many controversies remain regarding best clinical practice. This review will discuss some of the current controversies in elective neurosurgical practice, future perspectives, and the place of awake craniotomies in the armamentarium of the neuroanaesthetist.
-
This review examines the evidence base for the early management of head-injured patients. Traumatic brain injury (TBI) is common, carries a high morbidity and mortality, and has no specific treatment. The pathology of head injury is increasingly well understood. ⋯ Most of these are fixed at the time of injury such as age, gender, mechanism of injury, and presenting signs (Glasgow Coma Scale and pupillary signs), but some such as hypotension and hypoxia are potential areas for medical intervention. There is very little evidence positively in favour of any treatments or packages of early care; however, prompt, specialist neurocritical care is associated with improved outcome. Various drugs that target specific pathways in the pathophysiology of brain injury have been the subject of animal and human research, but, to date, none has been proved to be successful in improving outcome.
-
Traumatic brain injury (TBI) remains a major cause of morbidity and mortality, particularly in young people. Despite encouraging animal studies, human trials assessing the use of pharmacological agents after TBI have all failed to show efficacy. Current management strategies are therefore directed towards providing an optimal physiological environment in order to minimize secondary insults and maximize the body's own regenerative processes. ⋯ Recent data suggest that the use of protocolized management strategies, informed by multimodality monitoring, can improve patient outcome after TBI. Developments in multimodality monitoring have allowed a movement away from rigid physiological target setting towards an individually tailored, patient-specific, approach. The wealth of monitoring information available provides a challenge in terms of data integration and accessibility and modern software applications may aid this process.
-
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. The modern management of severe TBI has fallen into the domain of a multidisciplinary team led by neurointensivists, neuroanaesthetists, and neurosurgeons and is based on the avoidance of secondary injury, maintenance of cerebral perfusion pressure (CPP), and optimization of cerebral oxygenation. In this review, we will discuss the intensive care management of severe TBI with emphasis on the specific measures directed at the control of intracranial pressure and CPP.