Medical image analysis
-
Medical image analysis · Feb 2010
Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus.
Atlas-based segmentation is a powerful generic technique for automatic delineation of structures in volumetric images. Several studies have shown that multi-atlas segmentation methods outperform schemes that use only a single atlas, but running multiple registrations on volumetric data is time-consuming. Moreover, for many scans or regions within scans, a large number of atlases may not be required to achieve good segmentation performance and may even deteriorate the results. ⋯ The results show that ALMAS achieves the same performance as MAS at a much lower computational cost. When the available segmentation time is fixed, both AMAS and ALMAS perform significantly better than MAS. In addition, AMAS was applied to an online segmentation challenge for delineation of the caudate nucleus in brain MRI scans where it achieved the best score of all results submitted to date.
-
Medical image analysis · Oct 2009
A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification.
A scheme for the automatic detection of nodules in thoracic computed tomography scans is presented and extensively evaluated. The algorithm uses the local image features of shape index and curvedness in order to detect candidate structures in the lung volume and applies two successive k-nearest-neighbour classifiers in the reduction of false-positives. The nodule detection system is trained and tested on three databases extracted from a large-scale experimental screening study. ⋯ The system results are extensively evaluated including performance measurements on specific nodule types and sizes within the databases and on lesions which later proved to be malignant. In a random selection of 813 scans from the screening study a sensitivity of 80% with an average 4.2 false-positives per scan is achieved. The detection results presented are a realistic measure of a CAD system performance in a low-dose screening study which includes a diverse array of nodules of many varying sizes, types and textures.
-
Medical image analysis · Aug 2009
Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets.
Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation. Since its inception, Diffusion MRI has expanded considerably to include a number of variations such as diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI) and Q-ball imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. ⋯ Last, we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets are almost uniform and show that it can also be applied to the problem of efficiently ordering an existing point-set of any size. This work enables a clinician to start an acquisition with just the minimum number of gradient directions and an initial estimate of the orientation distribution functions (ODF) and then the next gradient directions and ODF estimates can be recursively and optimally determined, allowing the acquisition to be stopped as soon as desired or at any iteration with the optimal ODF estimates. This opens new and interesting opportunities for real-time feedback for clinicians during an acquisition and also for researchers investigating into optimal diffusion orientation sets and real-time fiber tracking and connectivity mapping.
-
Medical image analysis · Jun 2009
Automated classification of fMRI data employing trial-based imagery tasks.
Automated interpretation and classification of functional MRI (fMRI) data is an emerging research field that enables the characterization of underlying cognitive processes with minimal human intervention. In this work, we present a method for the automated classification of human thoughts reflected on a trial-based paradigm using fMRI with a significantly shortened data acquisition time (less than one minute). Based on our preliminary experience with various cognitive imagery tasks, six characteristic thoughts were chosen as target tasks for the present work: right-hand motor imagery, left-hand motor imagery, right foot motor imagery, mental calculation, internal speech/word generation, and visual imagery. ⋯ Extracted feature vectors were classified using the support vector machine (SVM) algorithm. Parameter optimization, using a k-fold cross validation scheme, allowed the successful recognition of the six different categories of administered thought tasks with an accuracy of 74.5% (mean)+/-14.3% (standard deviation) across all five subjects. Our proposed study for the automated classification of fMRI data may be utilized in further investigations to monitor/identify human thought processes and their potential link to hardware/computer control.