Journal of medicinal chemistry
-
Comparative Study
Synthesis and antitumor activity of 3- and 5-hydroxy-4-methylpyridine-2-carboxaldehyde thiosemicarbazones.
To develop an alpha-(N)-heterocyclic carboxaldehyde thiosemicarbazone with clinical utility as an anticancer agent, two analogues, 3-hydroxy-4-methylpyridine-2-carboxaldehyde thiosemicarbazone (3-HMP) and 5-hydroxy-4-methylpyridine-2-carboxaldehyde thiosemicarbazone (5-HMP), of 5-hydroxypyridine-2-carboxaldehyde thiosemicarbazone (5-HP) have been designed and synthesized by two different methods. 3-HMP and 5-HMP both showed better antitumor activity than their respective parent compounds, 3-hydroxypyridine-2-carboxaldehyde thiosemicarbazone and 5-HP, in mice bearing the L1210 leukemia.
-
Various substituted pyridine-2-carboxaldehyde thiosemicarbazones (12 compounds) have been synthesized and evaluated for antineoplastic activity in mice bearing the L1210 leukemia. Oxidation of 3-nitro-2-picoline,5-nitro-2-picoline,3-nitro-2,4-lutidine, and 5-nitro-2,4-lutidine with selenium dioxide was employed to generate the corresponding pyridine-2-carboxaldehydes, which were then converted to cyclic ethylene acetals and subsequently reduced to amino and hydroxyamino derivatives by catalytic hydrogenation. ⋯ Acetylation of the amino acetals and alkylsulfonation of the 5-amino acetal, followed by condensation with thiosemicarbazide was employed to yield amide thiosemicarbazones. The most active compounds synthesized were 3-aminopyridine-2-carboxaldehyde thiosemicarbazone and 3-amino-4-methylpyridine-2-carboxaldehyde thiosemicarbazone which produced against the L1210 leukemia, % T/C values of 246 and 255, and 40% 60-day long-term survivors at two daily doses of 40 mg/kg and 10 mg/kg, respectively, for six consecutive days.