Journal of medicinal chemistry
-
Four new potential self-immolative prodrugs derived from phenol and aniline nitrogen mustards, four model compounds derived from their corresponding fluoroethyl analogues and two new self-immolative linkers were designed and synthesized for use in the suicide gene therapy termed GDEPT (gene-directed enzyme prodrug therapy). The self-immolative prodrugs were designed to be activated by the enzyme carboxypeptidase G2 (CPG2) releasing an active drug by a 1, 6-elimination mechanism via an unstable intermediate. Thus, N-[(4-¿[4-(bis¿2-chloroethyl¿amino)phenoxycarbonyloxy]methyl¿pheny l)c arbamoyl]-L-glutamic acid (23), N-[(4-¿[4-(bis¿2-chloroethyl¿amino)phenoxycarbonyloxy]methyl¿pheno xy) carbonyl]-L-glutamic acid (30), N-[(4-¿[N-(4-¿bis[2-chloroethyl]amino¿phenyl)carbamoyloxy]methyl¿+ ++phen oxy)carbonyl]-L-glutamic acid (37), and N-[(4-¿[N-(4-¿bis[2-chloroethyl]amino¿phenyl)carbamoyloxy]methyl¿+ ++phen yl)carbamoyl]-L-glutamic acid (40) were synthesized. ⋯ The phenylenediamine compounds were found to behave as prodrugs, yielding IC50 prodrug/IC50 drug ratios between 20- and 33-fold (for 37 and 40) and differentials of 12-14-fold between CPG2-expressing and control LacZ-expressing clones. The drugs released are up to 70-fold more potent than 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoic acid that results from the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA) which has been used previously for GDEPT. These data demonstrate the viability of this strategy and indicate that self-immolative prodrugs can be synthesized to release potent mustard drugs selectively by cells expressing CPG2 tethered to the cell surface in GDEPT.