Journal of medicinal chemistry
-
Previously, we demonstrated that the potent antiproliferative activity of the di-2-pyridylketone thiosemicarbazone (DpT) series of Fe chelators was due to their ability to induce Fe depletion and form redox-active Fe complexes (Richardson, D. R.; et al. J. ⋯ This makes the BpT chelators the most active anticancer agents developed within our laboratory. The BpT series Fe complexes exhibit lower redox potentials than their corresponding DpT and NBpT complexes, highlighting their enhanced redox activity. The increased ability of BpT-Fe complexes to catalyze ascorbate oxidation and benzoate hydroxylation, relative to their DpT and NBpT analogues, suggested that redox cycling plays an important role in their antiproliferative activity.