Journal of medicinal chemistry
-
Through systematic structure-activity studies of the 2-benzoylpyridine thiosemicarbazone (HBpT), 2-(3-nitrobenzoyl)pyridine thiosemicarbazone (HNBpT) and dipyridylketone thiosemicarbazone (HDpT) series of iron (Fe) chelators, we identified structural features necessary to form Fe complexes with potent anticancer activity (J. Med. Chem. 2007, 50, 3716-3729). ⋯ Four of the six HApT chelators had potent antitumor activity (IC(50): 0.001-0.002 microM) and Fe chelation efficacy that was similar to the most effective HBpT and HDpT ligands. The HApT Fe complexes had the lowest Fe(III/II) redox potentials of any thiosemicarbazone series we have generated. This property, in combination with their ability to effectively chelate cellular Fe, make the HApT series one of the most potent antiproliferative agents developed by our group.
-
Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible mu opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. ⋯ Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the delta receptor (DOR) and more than 150-fold selectivity over the kappa receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR.