European journal of pain : EJP
-
(1) To compare caregivers attitudes on the use of end-of-life opioid analgesia in neonatal (NICU) and pediatric (PICU) intensive care units. (2) To investigate actual opioid administration to DR (delivery room), NICU and PICU patients in various end-of-life situations. ⋯ End-of-life opioid administration to primary comfort care patients in the DR differs fundamentally from NICU or PICU handling of dying patients. Once patients are admitted to an intensive care unit, practice and attitudes towards end-of-life opioid administration are similar in NICUs and PICUs.
-
Randomized Controlled Trial
Absence of long-term analgesic effect from a short-term S-ketamine infusion on fibromyalgia pain: a randomized, prospective, double blind, active placebo-controlled trial.
To assess the analgesic efficacy of the N-methyl-D-aspartate receptor antagonist S(+)-ketamine on fibromyalgia pain, the authors performed a randomized double blind, active placebo-controlled trial. Twenty-four fibromyalgia patients were randomized to receive a 30-min intravenous infusion with S(+)-ketamine (total dose 0.5mg/kg, n=12) or the active placebo, midazolam (5mg, n=12). Visual Analogue Pain Scores (VAS) and ketamine plasma samples were obtained for 2.5-h following termination of treatment; pain scores derived from the fibromyalgia impact questionnaire (FIQ) were collected weekly during an 8-week follow-up. ⋯ Side effects as measured by the Bowdle questionnaire (which scores for 13 separate psychedelic symptoms) were mild to moderate in both study groups and declined rapidly, indicating adequate blinding of treatments. Efficacy of ketamine was limited and restricted in duration to its pharmacokinetics. The authors argue that a short-term infusion of ketamine is insufficient to induce long-term analgesic effects in fibromyalgia patients.
-
Randomized Controlled Trial
Differential effects on sensory functions and measures of epidermal nerve fiber density after application of a lidocaine patch (5%) on healthy human skin.
Topical application of lidocaine is an effective approach for treatment of post-herpetic neuralgia and other painful neuropathies. Lidocaine inhibits voltage-gated Na(+) channels and it most likely reduces excitability of cutaneous sensory neurons which can be hyperexcitable or spontaneously active in states of neuropathic pain. However, lidocaine and other local anesthetics also exert a pronounced neurotoxicity and they activate the irritant receptors TRPV1 and TRPA1. ⋯ In conclusion, lidocaine patches seem to have differential effects on sensory modalities in healthy skin. A degeneration of epidermal nerve fibers has previously been demonstrated for patches containing the TRPV1-agonist capsaicin and our findings suggest that this effect might also be relevant for lidocaine patches. These data warrant further studies on molecular mechanisms mediating a relief of neuropathic pain by topical lidocaine.
-
We investigated the potential of secretory phospholipase A(2) (sPLA(2))-induced pancreatitis to promote abdominal hyperalgesia, as well as to depolarize sensory fibres in vitro using a grease-gap technique. Pancreatitis was induced by the injection of sPLA(2) from Crotalus durissus terrificus (sPLA(2)Cdt, 300μgkg(-1)) venom into the common bile duct of rats. Pancreatic inflammatory signs, serum amylase levels and abdominal hyperalgesia were evaluated in rats treated or not with SR140333, a tachykinin NK(1) receptor antagonist. ⋯ Neither sPLA(2)Cdt nor sPLA(2) from Naja mocambique mocambique venom depolarized capsaicin-sensitive sensory fibres from rat vagus nerve, but they decreased the propagated compound action potentials in both A and C fibres. These data show for the first time that NK(1) receptors play an important role in the early abdominal hyperalgesia in a rat model of sPLA(2)-induced pancreatitis, suggesting that these receptors are of importance in the development of pain in the pancreatitis condition. We also provide evidence that sPLA(2)s do not directly depolarize sensory fibres in vitro.
-
Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a non-replicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. ⋯ In vitro, infection of primary DRG neurons with vG prevented the increase in Na(V)1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on Na(V)1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABA(B) receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα((i/o)) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in Na(V)1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent.