European journal of pain : EJP
-
Comparative Study Clinical Trial
Attenuation of experimental pain by vibro-tactile stimulation in patients with chronic local or widespread musculoskeletal pain.
Patients with chronic pain syndromes, like fibromyalgia (FM) complain of widespread pain and tenderness, as well as non-refreshing sleep, cognitive dysfunction, and negative mood. Several lines of evidence implicate abnormalities of central pain processing as contributors for chronic pain, including dysfunctional descending pain inhibition. One form of endogenous pain inhibition, diffuse noxious inhibitory controls (DNIC), has been found to be abnormal in some chronic pain patients and evidence exists for deficient spatial summation of pain, specifically in FM. Similar findings have been reported in patients with localized musculoskeletal pain (LMP) disorders, like neck and back pain. Whereas DNIC reduces pain through activation of nociceptive afferents, vibro-tactile pain inhibition involves innocuous A-beta fiber. To assess whether patients with localized or widespread chronic pain disorders have dysfunctional A-beta related pain inhibition we enrolled 28 normal pain-free controls (NC), 29 FM patients, and 19 subjects with neck or back pain. All received 10s sensitivity-adjusted noxious heat stimuli to the forearms as test stimuli. To assess endogenous analgesic mechanisms of study subjects, vibro-tactile conditioning stimuli were simultaneously applied with test stimuli either homotopically or heterotopically. Additionally, the effect of distraction on experimental pain was assessed. Homotopic vibro-tactile stimulation resulted in 40% heat pain reductions in all subject groups. Distraction did not seem to affect experimental pain ratings. ⋯ Vibro-tactile stimulation effectively recruited analgesic mechanisms not only in NC but also in patients with chronic musculoskeletal pain, including FM. Distraction did not seem to contribute to this analgesic effect.
-
Comparative Study
Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain.
Chronic pain is a hallmark of osteoarthritis (OA), yet little is known about its properties and representation in the brain. Here we use fMRI combined with psychophysics to study knee pain in fourteen OA patients and nine healthy controls. Mechanical painful pressure stimuli were applied to the knee in both groups and ratings of evoked pain and related brain activity examined. ⋯ In a subgroup of patients (n=6) we examined brain activity changes for a 2-week, repeat measure, cyclooxygenase-2 inhibitor (valdecoxib) therapy. Treatment decreased spontaneous pain for the worse knee and clinical characteristics of OA, and increased blood and csf levels of the drug which correlated positively with prefrontal-limbic brain activity. These findings indicate dissociation between mechanically induced and spontaneous OA knee pain, the latter engaging brain regions involved in emotional assessment of the self, and challenge the standard clinical view regarding the nature of OA pain.
-
In anaesthetised rats, systematic electrophysiological recordings from dorsal horn neurones in spinal segments Th13-L5 were made to obtain information about the spinal nociceptive processing from the lumbar thoracolumbar fascia. Six to fourteen percent of the neurones in the spinal segments Th13-L2 had nociceptive input from the thoracolumbar fascia in naïve animals, no neurones responsive to input from the lumbar fascia were found in segments L3-L5. The segmental location of the receptive fields in the fascia was shifted 2-4 segments caudally relative to the spinal segment recorded from. ⋯ The proportion of neurones responsive to input from the thoracolumbar fascia rose significantly from 4% to 15% (P<0.05) in animals with an experimentally-induced inflammation of a low back muscle (multifidus). Moreover, neurones in spinal segment L3 - that did not receive input from the fascia in normal animals - responded to fascia input in animals with inflamed muscle. The data suggest that the nociceptive input from the thoracolumbar fascia contributes to the pain in low back pain patients.
-
Activation of the prefrontal cortex occurs during acute and chronic pain and models of experimental hyperalgesia. The present study was carried out to determine possible miRNA changes in the prefrontal cortex, after inflammatory pain induced by facial carrageenan injection in mice. miRNA microarray analyses showed significantly increased levels of miR-155 and miR-223 in the prefrontal cortex of carrageenan-injected mice. The changes were verified by real-time RT-PCR, and shown to occur bilaterally. ⋯ Significantly downregulated c/ebp Beta but upregulated GCSF, accompanied by increased immunolabeling with an antibody to myeloperoxidase were found in the prefrontal cortex of facial carrageenan treated mice. It is postulated that this could lead to increased inflammation and activation of the prefrontal cortex. Further studies are necessary to determine if specific miRNAs could be useful as therapeutic molecules for pain.
-
Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. ⋯ This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception.