Critical care : the official journal of the Critical Care Forum
-
As in other areas of medicine, the specialty of critical care medicine, which has made important contributions in the pathophysiology of critical illness, is facing challenges that must be recognized and addressed in the current century. In this review, we argue that the skill set required to adequately treat critically ill patients will also require knowledge of molecular biology for better diagnosis and treatment. ⋯ Incorporating molecular biology techniques in the research arsenal of the intensivist will provide the opportunity to dissect out and define the reversible and irreversible intracellular processes giving rise to the major causes of mortality in intensive care units. Two historical paradigms, the cardiopulmonary resuscitation and polymerase chain reaction, summarize how critical care medicine began, and how it could mature in the years to come.
-
The production of superantigenic exotoxins by Gram positive bacteria underlies the pathology of toxic shock syndrome. Future treatment strategies for superantigen-mediated diseases are likely to be directed at blocking the three-way interaction between superantigen, T cell receptor and major histocompatibility class II molecule, which inititates an excessive and disordered inflammatory response. In this article, we review the first published data to address one such strategy in the context of other recognised and experimental treatments.
-
Thrombin is a multifunctional protein, with procoagulant, inflammatory and anticoagulant effects. Binding of thrombin to thrombomodulin results in activation of Protein C and initiation of the Activated Protein C anticoagulant pathway, a process that is augmented by the endothelial cell Protein C receptor (EPCR). Activated Protein C has demonstrated antithrombotic, anti-inflammatory, and profibrinolytic properties. ⋯ Activated Protein C has also been shown to modulate inflammation. When the level of thrombomodulin or Protein C is reduced in sepsis there is a vicious cycle of coagulation and inflammation, with potentially lethal consequences. In vitro studies and animal models have shown that Activated Protein C blunts the inflammatory and coagulant response to sepsis through a variety of mechanisms.
-
Intensive-care units (ICUs) must be utilised in the most efficient way. Greater input of intensivists leads to better outcomes and more efficient use of resources. 'Closed' ICUs operate as functional units with a competent on-site team and their own management under the supervision of a full-time intensivist directly responsible for the treatment. ⋯ At night, the on-site physicians need not necessarily be specialists as long as an experienced intensivist is on call. Because of the shortage of intensivists, such standards will be difficult to maintain everywhere, but they should, at least, be mandatory for larger hospitals serving as regional centres.
-
Red cells are uniquely designed to transport oxygen and facilitate oxygen uptake by systemic tissues. Blood transfusions are thus logical therapeutic choices in patients who exhibit signs of oxygen debt. ⋯ Therefore, armed with an understanding of the variety of clinical presentations characterising oxygen debt, as well as an appreciation of the risks involved, blood transfusions should be considered in all critically ill patients. This includes the consideration of liberalized hemoglobin triggers and hemoglobin thresholds in normal ranges.