Critical care : the official journal of the Critical Care Forum
-
Comparative Study
Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study.
We conducted the present study to assess the validity of mortality prediction systems in patients admitted to the intensive care unit (ICU) with severe sepsis and septic shock. We included Acute Physiology and Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, Mortality Probability Model (MPM) II0 and MPM II24 in our evaluation. In addition, SAPS II and MPM II24 were customized for septic patients in a previous study, and the customized versions were included in this evaluation. ⋯ Although general ICU mortality system models had accurate overall mortality prediction, they had poor calibration. Customization of SAPS II and, to a lesser extent, MPM II24 improved calibration. The customized model may be a useful tool when evaluating outcomes in patients with sepsis.
-
It has recently been shown that strategies aimed at preventing ventilator-induced lung injury, such as ventilating with low tidal volumes, can reduce mortality in patients with acute respiratory distress syndrome (ARDS). High-frequency oscillatory ventilation (HFOV) seems ideally suited as a lung-protective strategy for these patients. HFOV provides both active inspiration and expiration at frequencies generally between 3 and 10 Hz in adults. ⋯ Although many investigators have studied the merits of HFOV in neonates and in pediatric populations, evidence for its use in adults with ARDS is limited. A recent multicenter, randomized, controlled trial has shown that HFOV, when used early in ARDS, is at least equivalent to conventional ventilation and may have beneficial effects on mortality. The present article reviews the principles and practical aspects of HFOV, and the current evidence for its application in adults with ARDS.
-
Comparative Study Clinical Trial Controlled Clinical Trial
Diagnostic ability of hand-held echocardiography in ventilated critically ill patients.
To compare the diagnostic capability of recently available hand-held echocardiography (HHE) and of conventional transthoracic echocardiography (TTE) used as a gold standard in critically ill patients under mechanical ventilation. ⋯ HHE appears to have a narrower diagnostic field when compared with conventional TTE, but promises to accurately identify diagnoses based on two-dimensional imaging in ventilated critically ill patients.
-
The microcirculation is a complex and integrated system that supplies and distributes oxygen throughout the tissues. The red blood cell (RBC) facilitates convective oxygen transport via co-operative binding with hemoglobin. In the microcirculation oxygen diffuses from the RBC into neighboring tissues, where it is consumed by mitochondria. ⋯ Nitric oxide (NO) maintains microvascular homeostasis by regulating arteriolar tone, RBC deformability, leukocyte and platelet adhesion to endothelial cells, and blood volume. NO also regulates mitochondrial respiration. During sepsis, NO over-production mediates systemic hypotension and microvascular reactivity, and is seemingly protective of microvascular blood flow.
-
We describe a case of systemic inflammatory response syndrome associated with air embolism following the removal of a central line catheter, coupled with a deep inspiratory maneuver. The presence of a patent foramen ovale allowed the passage of a clinically significant amount of air from the venous circulation to the systemic circulation. The interaction of air with the systemic arterial endothelium may have triggered the release of endothelium-derived cytokines, resulting in the physiologic response of systemic inflammatory response syndrome.