Critical care : the official journal of the Critical Care Forum
-
New technology using partial carbon dioxide rebreathing has been developed to measure cardiac output. Because rebreathing increases respiratory effort, we investigated whether a newly developed system with 35 s rebreathing causes a lesser increase in respiratory effort under partial ventilatory support than does the conventional system with 50 s rebreathing. We also investigated whether the shorter rebreathing period affects the accuracy of cardiac output measurement. ⋯ When patients breathe spontaneously the partial carbon dioxide rebreathing technique increases minute ventilation and arterial carbon dioxide tension, but the effect is less with a shorter rebreathing period. The 35 s rebreathing period yielded cardiac output measurements similar in accuracy to those with 50 s rebreathing.
-
Respiratory variation in arterial pulse pressure is a reliable predictor of fluid responsiveness in mechanically ventilated patients with circulatory failure. The main limitation of this method is that it requires an invasive arterial catheter. Both arterial and pulse oximetry plethysmographic waveforms depend on stroke volume. We conducted a prospective study to evaluate the relationship between respiratory variation in arterial pulse pressure and respiratory variation in pulse oximetry plethysmographic (POP) waveform amplitude. ⋯ Respiratory variation in arterial pulse pressure above 13% can be accurately predicted by a respiratory variation in POP waveform amplitude above 15%. This index has potential applications in patients who are not instrumented with an intra-arterial catheter.
-
Deep venous thrombosis with subsequent pulmonary embolism or post-thrombotic syndrome is a feared complication in the intensive care unit. Therefore, routine prophylactic anticoagulation is widely recommended. Aside from unfractionated heparin, low molecular weight heparins, such as certoparin, have become increasingly used for prophylactic anticoagulation in critically ill patients. In this prospective study, we evaluated the potency of 3,000 IU certoparin administered once daily to reach antithrombotic antifactor Xa (aFXa) levels of 0.1 to 0.3 IU/ml in 62 critically ill patients. ⋯ Standard dosages of certoparin of 3,000 IU given once or twice daily are ineffective for attaining the recommended aFXa levels of 0.1 to 0.3 IU/ml in critically ill patients. Low antithrombin levels before certoparin administration were independently associated with low aFXa levels. Renal function and vasopressor therapy may further influence the effectiveness of certoparin in ensuring adequate antithrombotic prophylaxis.
-
Acute metabolic acidosis of non-renal origin is usually a result of either lactic or ketoacidosis, both of which are associated with a high anion gap. There is increasing recognition, however, of a group of acidotic patients who have a large anion gap that is not explained by either keto- or lactic acidosis nor, in most cases, is inappropriate fluid resuscitation or ingestion of exogenous agents the cause. ⋯ The levels of certain low molecular weight anions usually associated with intermediary metabolism were found to be significantly elevated in the plasma ultrafiltrate obtained from patients with metabolic acidosis. Our results suggest that these hitherto unmeasured anions may significantly contribute to the generation of the anion gap in patients with lactic acidosis and acidosis of unknown aetiology and may be underestimated in diabetic ketoacidosis. These anions are not significantly elevated in patients with normal anion gap acidosis.
-
Randomized Controlled Trial Comparative Study
Efficiency of 7.2% hypertonic saline hydroxyethyl starch 200/0.5 versus mannitol 15% in the treatment of increased intracranial pressure in neurosurgical patients - a randomized clinical trial [ISRCTN62699180].
This prospective randomized clinical study investigated the efficacy and safety of 7.2% hypertonic saline hydroxyethyl starch 200/0.5 (7.2% NaCl/HES 200/0.5) in comparison with 15% mannitol in the treatment of increased intracranial pressure (ICP). ⋯ 7.2% NaCl/HES 200/0.5 is more effective than mannitol 15% in the treatment of increased ICP. A dose of 1.4 ml/kg of 7.2% NaCl/HES 200/0.5 can be recommended as effective and safe. The advantage of 7.2% NaCl/HES 200/0.5 might be explained by local osmotic effects, because there were no clinically relevant differences in hemodynamic clinical chemistry parameters.