Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Recombinant human erythropoietin therapy in critically ill patients: a dose-response study [ISRCTN48523317].
The aim of this study was to assess the efficacy of two dosing schedules of recombinant human erythropoietin (rHuEPO) in increasing haematocrit (Hct) and haemoglobin (Hb) and reducing exposure to allogeneic red blood cell (RBC) transfusion in critically ill patients. ⋯ Administration of rHuEPO to critically ill patients significantly reduced the need for RBC transfusion. The magnitude of the reduction did not differ between the two dosing schedules, although there was a dose response for Hct and Hb to rHuEPO in these patients.
-
Randomized Controlled Trial Comparative Study
Efficiency of 7.2% hypertonic saline hydroxyethyl starch 200/0.5 versus mannitol 15% in the treatment of increased intracranial pressure in neurosurgical patients - a randomized clinical trial [ISRCTN62699180].
This prospective randomized clinical study investigated the efficacy and safety of 7.2% hypertonic saline hydroxyethyl starch 200/0.5 (7.2% NaCl/HES 200/0.5) in comparison with 15% mannitol in the treatment of increased intracranial pressure (ICP). ⋯ 7.2% NaCl/HES 200/0.5 is more effective than mannitol 15% in the treatment of increased ICP. A dose of 1.4 ml/kg of 7.2% NaCl/HES 200/0.5 can be recommended as effective and safe. The advantage of 7.2% NaCl/HES 200/0.5 might be explained by local osmotic effects, because there were no clinically relevant differences in hemodynamic clinical chemistry parameters.
-
Recent advances in acid-base physiology and in the epidemiology of acid-base disorders have refined our understanding of the basic control mechanisms that determine blood pH in health and disease. These refinements have also brought parity between the newer, quantitative and older, descriptive approaches to acid-base physiology. This review explores how the new and older approaches to acid-base physiology can be reconciled and combined to result in a powerful bedside tool. A case based tutorial is also provided.
-
Pulmonary disease changes the physiology of the lungs, which manifests as changes in respiratory mechanics. Therefore, measurement of respiratory mechanics allows a clinician to monitor closely the course of pulmonary disease. Here we review the principles of respiratory mechanics and their clinical applications. ⋯ As the severity of pulmonary disease increases, mechanical ventilation can become necessary. We discuss the use of pressure-volume curves in assisting with poorly compliant lungs while on mechanical ventilation. In addition, we discuss physiologic parameters that assist with ventilator weaning as the disease process abates.
-
Multicenter Study
Recombinant human activated protein C resets thrombin generation in patients with severe sepsis - a case control study.
Recombinant human activated protein C (rhAPC) is the first drug for which a reduction of mortality in severe sepsis has been demonstrated. However, the mechanism by which this reduction in mortality is achieved is still not clearly defined. The aim of the present study was to evaluate the dynamics of the anticoagulant, anti-inflammatory and pro-fibrinolytic action of rhAPC in patients with severe sepsis, by comparing rhAPC-treated patients with case controls. ⋯ Sepsis-induced thrombin generation in severely septic patients is reset by rhAPC within the first 8 h of infusion without influencing parameters of fibrinolysis and inflammation.