Neuromodulation : journal of the International Neuromodulation Society
- 
    
    
Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular. A significant increase in the number of rat TMS publications has necessitated analysis of their relevance to human work. We therefore review the essential principles for the approximation of human TMS protocols in rats as well as specific methods that addressed these issues in published studies. ⋯ Rat TMS has several limitations when considering parallels between animal and human stimulation. However, it has proven to be a useful tool in the field of translational brain stimulation and will likely continue to aid in the design and implementation of stimulation protocols for therapeutic and diagnostic applications.
 - 
    Randomized Controlled Trial
Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation.
We have previously reported that transcranial direct current stimulation (tDCS) delivered to the occipital cortex enhances visual functional recovery when combined with three months of computer-based rehabilitative training in patients with hemianopia. The principal objective of this study was to evaluate the temporal sequence of effects of tDCS on visual recovery as they appear over the course of training and across different indicators of visual function. ⋯ These results suggest that tDCS may differentially affect the magnitude and sequence of visual recovery in a manner that is task specific to the type of visual rehabilitative training strategy employed.
 - 
    Review Meta Analysis
Analgesic effects of noninvasive brain stimulation in rodent animal models: a systematic review of translational findings.
Noninvasive brain stimulation (NIBS) interventions have demonstrated promising results in the clinical treatment of pain, according to several preliminary trials, although the results have been mixed. The limitations of clinical research on NIBS are the insufficient understanding of its mechanisms of action, a lack of adequate safety data, and several disparities with regard to stimulation parameters, which have hindered the generalizability of such studies. Thus, experimental animal research that allows the use of more invasive interventions and creates additional control of independent variables and confounders is desirable. To this end, we systematically reviewed animal studies investigating the analgesic effects of NIBS. In addition, we also explored the investigation of NIBS in animal models of stroke as to compare these findings with NIBS animal pain research. ⋯ We found a limited number of animal studies for both pain and stroke NIBS experimental research. There is a lack of safety data in animal studies in these two topics and results from these studies have not been yet fully tested and translated to human research. We discuss the challenges and limitations of translating experimental animal research on NIBS into clinical studies.