Neuromodulation : journal of the International Neuromodulation Society
-
To report on the efficacy of dorsal root ganglion stimulation in a patient with complex regional pain syndrome (CRPS) type I of the knee. ⋯ Placement of three DRG stimulation leads at levels L2, L3, and L4 in a patient with intractable CRPS type I of the knee resulted in major pain relief. We recommend further investigation of the effect of DRG stimulation on pain due to CRPS of the knee.
-
Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. ⋯ Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain.
-
In the not-too-distant past, the dorsal root ganglion (DRG) was portrayed as a passive neural structure without involvement in the development or maintenance of chronic neuropathic pain (NP). The DRG was thought of as a structure that merely "supported" physiologic communication between the peripheral nervous system (PNS) and the central nervous system (CNS). Newer scientific information regarding the anatomic and physiologic changes that occur within the DRG as a result of environmental pressures has dispelled this concept and suggests that the DRG is an active participant in the development of NP. This new information, along with new clinical data showing that stimulation of the DRG reduces intensity of pain, suggests that the DRG can be a robust target for neuromodulation therapies. ⋯ The DRG is an active participant in the development of NP. DRG stimulation has multiple effects on the abnormal changes that occur within the DRG as a result of peripheral afferent fiber injury. The sum total of these stimulation effects is to stabilize and decrease hyperexcitability of DRG neurons and thereby decrease NP.
-
Although burst spinal cord stimulation (SCS) has been reported to reduce neuropathic pain, no study has explicitly investigated how the different parameters that define burst SCS may modulate its efficacy. The effectiveness of burst SCS to reduce neuronal responses to noxious stimuli by altering stimulation parameters was evaluated in a rat model of cervical radiculopathy. ⋯ Burst SCS can be optimized by adjusting relevant stimulation parameters to modulate the charge delivered to the spinal cord during stimulation. The efficacy of burst SCS is dependent on the charge per burst.
-
Clinical Trial
Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation.
Spinal cord stimulation is a commonly used, safe, and effective procedure applied for medically intractable failed back surgery syndrome, as well as other neuropathic pain syndromes. Recently, a novel stimulation paradigm called burst stimulation has been developed that is paresthesia-free and has a more pronounced suppressive effect on neuropathic pain. ⋯ The results suggest that increasing the frequency from 500 to 1000 Hz while keeping the pulse width constant does not add any extra benefit in suppressing pain. Further studies should verify whether increasing the frequency above 1000 Hz has a similar lack of effect.