Neuromodulation : journal of the International Neuromodulation Society
-
The aim of this study was to investigate the strength of perceptual embodiment achieved during an adapted version of the rubber hand illusion (RHI) in response to a series of modified transcutaneous electrical nerve stimulation (TENS) pulse patterns with dynamic temporal and spatial characteristics which are more akin to the mechanical brush stroke in the original RHI. ⋯ The findings provide tentative, but not definitive, evidence that TENS parameters with dynamic spatial and temporal characteristics may produce more intense misattribution sensations and intense perceptual embodiment than parameters with static characteristics (e.g., continuous pulse patterns).
-
Neurostimulation of the hypoglossal nerve has shown promising results in the treatment of obstructive sleep apnea. This anatomic study describes the detailed topography of the hypoglossal nerve's motor points as a premise for super-selective neurostimulation in order to optimize results and minimize the risk of complications related to main nerve trunk manipulation. ⋯ A topographical map of the hypoglossal nerve terminal motor points was successfully created and could provide a framework for the optimization of the neurostimulation techniques.
-
Review Multicenter Study
Long-Term Evaluation of Changes in Operative Technique and Hardware-Related Complications With Deep Brain Stimulation.
Deep brain stimulation is the most frequent neurosurgical procedure for movement disorders. ⋯ This large series of patients and long-term follow-up demonstrates that risks are very low in comparison with other neurosurgical procedures, but DBS is still an elective procedure that necessitates extensive care and precision. In a rapidly evolving field, attention to surgical technique is imperative and will keep rates of complications at a minimum.
-
Review Case Reports
Early Use of 60 Hz Frequency Subthalamic Stimulation in Parkinson's Disease: A Case Series and Review.
Deep brain stimulation (DBS) is effective in treating the segmental symptoms of Parkinson's disease (PD) as well as axial symptoms that are levodopa responsive. PD patients on chronic DBS who develop axial symptoms and gait disturbances several years later oftentimes are refractory to high frequency stimulation (HFS). Several studies report benefit produced by low frequency subthalamic nucleus (STN) stimulation in such patients, though the sustainability of the effects has been mixed. ⋯ This case series demonstrates the clinical efficacy of utilizing low frequency (60 Hz) STN stimulation early in the DBS programming course in more advanced PD patients with levodopa responsive gait disturbance and freezing of gait. Activation of a broader stimulation field likely contributed to both axial and segmental symptom improvement while possibly aiding in the reduction of dyskinesia.
-
Randomized Controlled Trial
Low-Frequency Repetitive Transcranial Magnetic Stimulation Targeted to Premotor Cortex Followed by Primary Motor Cortex Modulates Excitability Differently Than Premotor Cortex or Primary Motor Cortex Stimulation Alone.
The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC, and a combined PMC + M1 stimulation approach which first targets stimulation over PMC then M1. ⋯ The results indicate that PMC + M1 stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions.