Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Motor Cortex Reorganization and Repetitive Transcranial Magnetic Stimulation for Pain-A Methodological Study.
Somatotopic reorganization of primary motor cortex (M1) has been described in several neurological conditions associated with chronic pain. We hypothesized that such reorganization impacts on the mechanisms of M1 stimulation induced analgesia and may either compromise the treatment effect of or provide an alternative target site for repetitive transcranial magnetic stimulation (rTMS). The aim of the study was to compare pain relief following rTMS of the standard motor "hotspot" with that of the reorganized area. ⋯ Cortical reorganization may provide a more effective stimulation target for rTMS in some individuals with neuropathic pain.
-
Randomized Controlled Trial
Clinical Outcomes of 1 kHz Subperception Spinal Cord Stimulation in Implanted Patients With Failed Paresthesia-Based Stimulation: Results of a Prospective Randomized Controlled Trial.
Pain relief via spinal cord stimulation (SCS) has historically revolved around producing paresthesia to replace pain, with success measured by the extent of paresthesia-pain overlap. In a recent murine study, by Shechter et al., showed the superior efficacy of high frequency SCS (1 kHz and 10 kHz) at inhibiting the effects of mechanical hypersensitivity compared to sham or 50 Hz stimulation. In the same study, authors report there were no differences in efficacy between 1 kHz and 10 kHz delivered at subperception stimulation strength (80% of motor threshold). Therefore, we designed a randomized, 2 × 2 crossover study of low frequency supra-perception SCS vs. subperception SCS at 1 kHz frequency in order to test whether subperception stimulation at 1 kHz was sufficient to provide effective pain relief in human subjects. ⋯ Out of 22 subjects that completed the study, 21 subjects (95%) reported improvements in average, best, and worst pain NPRS scores. All NPRS scores were significantly lower with subperception stimulation compared to paresthesia-based stimulation (p < 0.01, p < 0.05, and p < 0.05, respectively). As with NPRS scores, the treatment effect of subperception stimulation was significantly greater than that of paresthesia based stimulation on ODI scores (p = 3.9737 × 10(-5) ) and PGIC scores (p = 3.0396 × 10(-5) ).
-
Relative to the number of patients suffering chronic lumbar and cervical pain, fewer patients suffer persistent thoracic pain. Consequently there is less literature, with smaller sample sizes, reporting treatment of this cohort. Here, we assess peripheral nerve field stimulation (PNfS) as a potential treatment for chronic thoracic pain. ⋯ PNfS is an effective intervention for intractable disabling thoracic pain, offering sustained and worthwhile pain relief, for the overwhelming majority of the cohort. This may be especially true when considering a combined treatment approach of PNfS and analgesic use to manage remnant pain.