Neuromodulation : journal of the International Neuromodulation Society
-
Dorsal root ganglion (DRG) has recently emerged as an attractive target for neuromodulation therapy since primary sensory neurons and their soma in DRGs are important sites for pathophysiologic changes that lead to neuropathic pain. Our aim was to create evidence synthesis about the effects of electrical stimulation of DRG in the context of pain from in vitro and in vivo animal models, analyze methodology and quality of studies in the field. ⋯ Limited data from in vitro and in vivo animal studies indicate that electrical stimulation of DRG has a positive therapeutic effect in the context of pain-related outcomes. Further studies with a standardized methodological approach and outcomes will provide useful information about electrical stimulation of DRG in animal models.
-
Acupuncture or electroacupuncture (EA) has been applied for treating chemotherapy-induced emesis with limited success. The aims of this study were to investigate the anti-emetic effect of EA and to explore underlying anti-emetic mechanisms. ⋯ EA at PC6 with appropriate parameters has an inhibitory effect on cisplatin-induced nausea. The anti-emetic effect of the EA is centrally medicated involving the AP via the vagal pathway as well as the potential effect on AP by reducing the release of hormones.
-
Dorsal root ganglion stimulation (DRGS) received its first regulatory approval (CE marking in Europe) in late 2011, and so its use is now almost six years old. Several thousand patients have already been treated, and a landmark trial in lower limb complex regional pain syndrome (CRPS) and causalgia has recently been published. ⋯ There is now Class A RCT evidence that DRGS provides superior pain relief to SCS for CRPS and causalgia of the lower limb. In the coming years we hope that randomized controlled trials will be performed on an indication-by-indication basis, which, together with the publication of longer term follow-up data, will provide a more complete understanding of the role of DRGS in the treatment of neuropathic pain syndromes.
-
Review
High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation.
To develop the first high-resolution, multi-scale model of cervical non-invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds. ⋯ These findings indicate that realistic and precise modeling at both macroscopic and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on this approach, we predict conventional cervical nVNS protocols can activate A- and B- but not C-fibers. Our state-of-the-art implementation across scales is equally valuable for models of spinal cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models.
-
Case Reports Multicenter Study Clinical Trial
Fully Implantable Peripheral Nerve Stimulation for Hemiplegic Shoulder Pain: A Multi-Site Case Series With Two-Year Follow-Up.
To explore the feasibility and safety of a single-lead, fully implantable peripheral nerve stimulation system for the treatment of chronic shoulder pain in stroke survivors. ⋯ This case series demonstrates the safety and efficacy of a fully implantable axillary PNS system for chronic HSP. Participants experienced reduction in pain, reduction in pain interference, and improved pain-free external rotation ROM. There were no serious adverse events associated with the system or the procedure.