Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Burst SCS Microdosing Is as Efficacious as Standard Burst SCS in Treating Chronic Back and Leg Pain: Results From a Randomized Controlled Trial.
The burst waveform, a recent innovation in spinal cord stimulation (SCS), can achieve better outcomes than conventional tonic SCS, both for de novo implants and as a salvage therapy. Burst stimulation delivers more energy per second than tonic stimulation, which is a consideration for battery consumption. The clinical effectiveness of an energy-conserving strategy was investigated. ⋯ These results suggest that the use of energy-efficient burst microdosing stimulation paradigms with alternating stimulation-on and stimulation-off periods can provide clinically equivalent results to standard burst stimulation. This is important for extending SCS battery life. Further research is needed to comprehensively characterize the clinical utility of this approach and the neurophysiological mechanisms for the maintenance of pain relief during stimulation-off periods.
-
The aim of the current project was to evaluate the spinal cord stimulation (SCS) screening trial success rate threshold to obtain the same cost impact across two identical sets of patients following either a prolonged screening trial prior to implantation strategy or a full implant without a screening trial. ⋯ Considerable savings could be obtained by adopting an implantation strategy without a screening trial. It is plausible that accounting for other factors, such as complications that can occur with a screening trial, additional savings could be achieved by choosing a straight to implant treatment strategy. Nevertheless, additional evidence is warranted to support this claim.
-
Spinal cord stimulation (SCS) represents an important neurostimulation therapy for pain. A new ultra-high frequency (10,000 Hz) SCS paradigm has shown improved pain relief without eliciting paresthesia. We aim to determine whether sub-sensory threshold SCS of lower frequencies also can inhibit mechanical hypersensitivity in nerve-injured rats and examine how electric charge delivery of stimulation may affect pain inhibition by different patterns of subthreshold SCS. ⋯ Inhibition of neuropathic mechanical hypersensitivity can be achieved with low-frequency subthreshold SCS by optimizing the electric charge delivery, which may affect the effect of SCS in individual animals.
-
The physiological mechanisms behind the therapeutic effects of spinal cord stimulation (SCS) are only partially understood. Our aim was to perform a literature review of studies that used objective measures to characterize mechanisms of action of SCS in neuropathic pain patients. ⋯ SCS appears to modulate pain via spinal and/or supraspinal mechanisms of action (e.g., pain gating, descending pain inhibition). However, to better understand the mechanisms of action of SCS, we believe that it is necessary to carry out systematic, controlled, and well-powered studies using objective patient measures. To optimize the clinical effectiveness of SCS for neuropathic pain, we also believe that it is necessary to develop and implement patient-specific approaches.