Neuromodulation : journal of the International Neuromodulation Society
-
In rodents, we reported that short pulse-width (PW) neuromodulation might provide more efficient therapy delivery than traditional 0.21 msec PW. Using fully implanted, commercialized systems in the sheep, the goal of this study was to characterize the relationship of electromyographic (EMG) responses of the external anal sphincter (EAS) to different PWs of sacral neuromodulation (SNM). ⋯ In both anesthetized and awake conditions, a similar motor response may be evoked in the EAS at PWs much shorter (0.04-0.05 msec) than the 0.21 msec typically used with SNM. Potential battery savings manifested by shorter PW would provide more efficient therapy delivery and increased longevity of the stimulator.
-
Incomplete spinal cord injury (SCI) accounts for two-thirds of all SCIs in clinical practice. Preclinical research on the effect of sacral neuromodulation (SNM) on bladder function, however, has been focused only on animal models of complete SCI. We aimed to evaluate the effect of early SNM on bladder responses in a rat model of incomplete SCI. ⋯ Our results provide experimental evidence that early SNM treatment may prevent or diminish bladder dysfunctions (e.g., detrusor overactivity, abnormal micturition reflex) in a clinical condition of incomplete SCI.
-
Sacral nerve stimulation (SNS) is a surgical treatment of urinary and fecal incontinence. Despite its clinical efficacy, the mechanisms of action of SNS are still poorly known. This may be related to the use of acute stimulation models. Up to date, no rodent model of chronic SNS implants has been developed. Therefore, the aim of this study was to create a fully implantable and remotely controllable stimulating device to establish an animal model of chronic SNS. ⋯ This stimulating device provides an efficient method to perform chronic SNS studies in rats.