Neuromodulation : journal of the International Neuromodulation Society
-
Little is known about the effects of spinal cord stimulation (SCS) on chronic low back pain (CLBP) patients with no history of previous spine surgery. Using our prospectively collected database, we evaluate improvements in patients with and without previous spine surgery one-year post SCS implantation. ⋯ Patients with and without previous spine surgery showed similar improvements in pain intensity, pain quality, feelings of rumination and magnification, functional disability, and depression severity. SCS can improve CLBP regardless of whether patients have had previous spine surgery.
-
Randomized Controlled Trial Multicenter Study
A Prospective, Multicenter Study to Assess the Safety and Efficacy of Translingual Neurostimulation Plus Physical Therapy for the Treatment of a Chronic Balance Deficit Due to Mild-to-Moderate Traumatic Brain Injury.
Translingual neurostimulation (TLNS) studies indicate improved outcomes in neurodegenerative disease or spinal cord injury patients. This study was designed to assess the safety and efficacy of TLNS plus targeted physical therapy (PT) in people with a chronic balance deficit after mild-to-moderate traumatic brain injury (mmTBI). ⋯ Significant improvements in balance and gait, in addition to headaches, sleep quality, and fall frequency, were observed with TLNS plus targeted PT; in participants who had a chronic balance deficit following an mmTBI and had plateaued on prior conventional physiotherapy.
-
A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi-physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. ⋯ Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.
-
Multicenter Study
Factors Associated With Implantable Pulse Generator Site Pain: A Multicenter Cross-Sectional Study.
Implantable pulse generator (IPG) site pain following neuromodulation procedures is a recognized complication. The site of the IPG placement varies depending on the neuromodulation type and physician preference. The incidence of IPG site pain as a function of the site of IPG implantation has not been studied systematically. ⋯ The incidence of IPG site pain is an important complication of invasive neuromodulation. The anatomic location of the IPG placement does not appear to affect the incidence or severity of IPG site pain. However, the presence of a pre-implant chronic pain disorder does appear to affect the frequency and severity of IPG site pain.
-
Transcutaneous electrical nerve stimulation (TENS) is a minimally invasive method for treating pain. In the most recent review published in 2012, TENS was associated with increased pain relief following cardiothoracic surgery when compared to standard multimodal analgesia. The purpose of this systematic review and meta-analysis is to determine if adding TENS to current pain management practices decreases pain and analgesic use and improves pulmonary function for postcardiothoracic surgery patients. ⋯ The addition of TENS therapy to multimodal analgesia significantly decreases pain following cardiothoracic surgery, increases the recovery of pulmonary function, and decreases the use of analgesics.