Neuromodulation : journal of the International Neuromodulation Society
-
Multicenter Study
The Use of Remote Programming for Spinal Cord Stimulation for Patients With Chronic Pain During the COVID-19 Outbreak in China.
Due to the impact of COVID-19 epidemic, face-to-face follow-up treatments for patients with chronic pain and implanted spinal cord stimulation (SCS) devices are forced to be delayed or stopped. This has led to more follow ups being done remotely. Meanwhile, with the development of 4G/5G networks, smartphones, and novel devices, remote programming has become possible. Here, we investigated the demand and utility of remote follow-ups including remote programming for SCS for patients with chronic pain. ⋯ The remote programming was in high demand among participants. Most of the participants have tried remote follow-ups or even remote programming. The remote programming appeared to be more efficient, economic and were widely recognized among participants.
-
Multicenter Study
Novel Intermittent Dosing Burst Paradigm in Spinal Cord Stimulation.
Intermittent dosing (ID), in which periods of stimulation-on are alternated with periods of stimulation-off, is generally employed using 30 sec ON and 90 sec OFF intervals with burst spinal cord stimulation (SCS). The goal of this study was to evaluate the feasibility of using extended stimulation-off periods in patients with chronic intractable pain. ⋯ ID burst SCS effectively relieved pain for six months. The largest group of subjects used IDB settings of 30 sec ON and 360 sec OFF. These findings present intriguing implications for the optimal "dose" of electricity in SCS and may offer many advantages such as optimizing the therapeutic window, extending battery life, reducing recharge burden and, potentially, mitigating therapy habituation or tolerance.
-
Randomized Controlled Trial
Potential Therapeutic Effect of Low Amplitude Burst Spinal Cord Stimulation on Pain.
The SUNBURST Study, a USA-based controlled cross-over trial demonstrated that burst spinal cord stimulation was superior compared to tonic stimulation in suppressing chronic intractable pain. However, when on burst stimulation, participants preferred lower to higher amplitudes. This led to the hypothesis that lower burst amplitudes will correlate with lower pain scores while higher amplitudes will be associated with higher pain scores. ⋯ In burst spinal cord stimulation, in contrast to tonic stimulation, lower amplitudes are more effective in suppressing pain than high amplitudes.
-
High-frequency 10 kHz spinal cord stimulation (10 kHz-SCS) has achieved analgesia superior to traditional SCS in a number of studies. However, there is concern regarding long-term outcomes of 10 kHz-SCS. Prior work has suggested that explant rates are higher with 10 kHz-SCS. Our primary objective was to determine the explant rate of 10 kHz-SCS in a large patient cohort from multiple centers followed for at least 12 months after implant surgery. ⋯ We found 10 kHz-SCS explant rates to be similar to prior reported explant rates for traditional SCS devices. Patient-related factors including female sex and radiculopathy as the primary SCS indication may be protective factors against explantation.
-
Spinal cord stimulation (SCS) is a recommended treatment for chronic neuropathic pain. Persistent nonoperative low back pain of neuropathic origin has profound negative impacts on patient's lives. This prospective, open label, research study aimed to explore the use of SCS in patients with associated features of central sensitisation such as allodynia and hyperalgesia. ⋯ The 10 kHz SCS improved back and leg pain, QoL, pain-related disability and medication consumption in patients with nonoperative back pain of neuropathic origin. With further research incorporating a sham control arm, the efficacy of 10 kHz SCS in this patient cohort will become more established.