Neuromodulation : journal of the International Neuromodulation Society
-
Spinal cord injury (SCI) persons with chronic neuropathic pain (NP) demonstrate maladaptive autonomic profiles compared to SCI counterparts without NP (SCI - NP) or able-bodied (AB) controls. These aberrations may be secondary to maladaptive neuroplasticity in the shared circuitry of the pain neuromatrix-central autonomic network interface (PNM-CAN). In this study, we explored the proposed PNM-CAN mechanism in SCI + NP and AB cohorts following centrally-directed neuromodulation to assess if the PNM and CAN are capable of being differentially modulated. ⋯ Central modulation targeting the PNM produced autonomic changes in SCI + NP persons but not AB persons. These findings suggest that AB persons exhibit intact CAN mechanisms capable of compensating for PNM aberrations or simply that SCI + NP persons exhibit altered PNM-CAN machinery altogether. Our collective findings confirm the interconnectedness and maladaptive plasticity of PNM-CAN machinery in SCI + NP persons and suggest that the PNM and CAN circuitry can be differentially modulated.
-
High-frequency 10 kHz spinal cord stimulation (10 kHz-SCS) has achieved analgesia superior to traditional SCS in a number of studies. However, there is concern regarding long-term outcomes of 10 kHz-SCS. Prior work has suggested that explant rates are higher with 10 kHz-SCS. Our primary objective was to determine the explant rate of 10 kHz-SCS in a large patient cohort from multiple centers followed for at least 12 months after implant surgery. ⋯ We found 10 kHz-SCS explant rates to be similar to prior reported explant rates for traditional SCS devices. Patient-related factors including female sex and radiculopathy as the primary SCS indication may be protective factors against explantation.
-
Spinal cord stimulation is an effective therapy for chronic back and/or leg pain. Amplitude dose-response studies are lacking; therefore, little guidance exists regarding the minimum amplitude requirements with specific high dose parameters. This study characterized the minimum amplitude level that maintained SCS therapy satisfaction and pain relief when stimulating at 1000 Hz and 90 μsec. ⋯ The qualified study patients defined an implanted population reporting good pain relief and satisfaction using HD SCS therapy at baseline. The majority of these patients were able to maintain therapy satisfaction and pain relief (70% and 63.3%, respectively) with 20% perception threshold amplitude. Amplitudes below perception threshold could potentially maintain effective SCS therapy with HD stimulation in a subset of patients.
-
Multiple variables play a role in spinal cord stimulation (SCS) treatment outcomes, including patient anatomy, pain pattern, lead location, stimulation parameters, and so on. A wide range of stimulation parameters are considered safe and on-label, and as a result a growing number of new frequencies and frequency-combinations are being incorporated into standard practice. A standardized approach to therapy delivery may provide more consistent outcomes for more patients. The Vectors study evaluated whether there is significant sustained improvement in pain and functional outcomes when therapy is delivered using a standardized approach. ⋯ The Clinicaltrials.gov registration number for the study is NCT03345472.