Neuromodulation : journal of the International Neuromodulation Society
-
The location of the sacral dorsal root ganglion (DRG) is variable and can range from a location in the canal to the foramen. It is therefore imperative to not only ensure a dorsal placement but also map the location of the DRG. ⋯ This prospective analysis further demonstrates the utility and accuracy of IONM. The use of DRG IONM is reliable for confirming dorsal placement along the S1 DRG, mapping its position, and guiding postoperative programming. The S1 DRG is located at the border of the foramen and canal in most, but not all cases.
-
Intraoperative neuromonitoring (IONM) has been used in the implantation of spinal cord stimulation for both safety and confirmation of lead placement. It is less well defined in its use for dorsal root ganglion (DRG) stimulator placement. ⋯ This retrospective series demonstrates the utility and accuracy of IONM in not only confirming proper dorsal placement of a DRG electrode but also in maintaining a low adverse event profile. It further demonstrates that its utility in the real world with new users can be safe and accurate with an ease of integration.
-
Current strategies for motor recovery after spinal cord injury (SCI) aim to facilitate motor performance through modulation of afferent input to the spinal cord using epidural electrical stimulation (EES). The dorsal root ganglion (DRG) itself, the first relay station of these afferent inputs, has not yet been targeted for this purpose. The current study aimed to determine whether DRG stimulation can facilitate clinically relevant motor response in motor complete SCI. ⋯ The current paper provides first evidence that bilateral L4 DRG stimulation can evoke reproducible motor responses in the upper leg, sufficient for assisted weight bearing in patients with chronic motor complete SCI. As such, a new target for SCI treatment has surfaced, using existing stimulation devices, making the technique directly clinically accessible.
-
Dorsal root ganglion neurostimulation (DRG-S) is effective in treating various refractory chronic pain syndromes. In preclinical studies, DRG-S at very low frequencies (<5 Hz) reduces excitatory output in the superficial dorsal horn. Clinically, we have also observed the effectiveness of DRG-S at low frequencies. We conducted a case series to describe the effect of very low-frequency DRG-S stimulation on clinical outcomes. ⋯ DRG-S may have utility in treating chronic pain at lower stimulation frequencies than previously recognized. We have previously theorized that the mechanism of action may involve preferential recruitment of low-threshold mechanoreceptor fibers via the endogenous opioid system. Of clinical relevance, lower frequency stimulation maintains DRG-S efficacy regarding improvements in pain, disability, and quality of life. It can extend battery life and may potentially lead to the development of smaller implantable pulse generators.
-
Dorsal root ganglion stimulation (DRGS) is a promising neurostimulation modality in the treatment of painful polyneuropathy. The aim of this prospective pilot study was to investigate the effect of DRGS on pain intensity in patients with intractable painful polyneuropathy. ⋯ The results of this study suggest that DRGS significantly reduces both pain intensity and PGIC in patients with intractable painful polyneuropathy in the lower extremities. Large-scale clinical trials are needed to prove the efficacy of DRGS in intractable painful polyneuropathy.