Neuromodulation : journal of the International Neuromodulation Society
-
Acute cerebral ischemia is characterized by several pathological processes evolving during time, which contribute to the final tissue damage. Secondary processes, such as prolonged inflammatory response, impaired mitochondrial function, and oxidative stress, are responsible for the progression of brain injury to the peri-infarct area, called "penumbra." Adenosine has been shown to play a crucial role in regulating the inflammatory cascade following brain ischemia. Pulsed electromagnetic fields (PEMFs) act as modulators of adenosine receptors, increasing the functionality of the endogenous adenosine. In particular, PEMF exposure induces a significant upregulation of A2A and A3 adenosine receptors in different neuronal cell types. Several lines of evidence suggest that PEMF exposure might play a neuroprotective role after ischemic damage. ⋯ Altogether, these data demonstrate the efficacy of PEMFs against several mechanisms underlying ischemic damage and suggest that PEMFs might represent a novel noninvasive adjunctive treatment for acute ischemic stroke, providing neuroprotection and reducing functional deficits following ischemia.
-
Magnetic seizure therapy (MST) is a novel investigational brain stimulation modality for patients with treatment-resistant depression (TRD). MST is a potential alternative seizure-based treatment to electroconvulsive therapy (ECT), given that it may offer equivalent antidepressant efficacy, yet with a relative sparing of cognitive functioning. Heart rate variability (HRV) is a marker of central autonomic functioning. We aimed to explore the relationships among baseline HRV, age, clinical outcome, and executive function following MST, in patients with TRD. ⋯ Since this is an open-label trial, the influence of the placebo effect cannot be excluded. However, our results suggest that baseline RMSSD may be a state-biomarker of depression and executive function impairment. Additionally, while baseline vagally mediated resting cardiac activity did not predict the outcome of depression, it may mediate executive function improvements following MST.
-
Multiple sclerosis (MS) is often associated with urological disorders, mainly urinary incontinence and retention, the management of which being necessary to improve patient's quality of life (QOL) and to reduce potential urological complications. Besides the classical treatments based mainly on anticholinergics and/or self-catheterization, several neuromodulation techniques have been tried in recent years to improve these urinary disorders. By this review, we aim at providing an overview of neuromodulation and electrostimulation approaches to manage urinary symptoms in MS patients. ⋯ PTNS and SNM seem to be effective and safe therapeutic options for treating lower urinary tract symptoms in MS patients principally in case of overactive bladder (OAB) symptoms. Similarly, also SCS and TMS have been shown to be effective, despite the very limited number of patients and the small number of studies found in the literature. Interestingly, these techniques are effective even in patients who do not respond well to conservative therapies, such as anticholinergics. Furthermore, given their safety and efficacy, stimulations such as PTNS could be considered as a first-line treatment for OAB in MS patients, also considering that they are often preferred by patients to other commonly used treatments.
-
Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. ⋯ DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
-
Lack of interstitial cells of Cajal (ICC) and neuropathy were the most possible pathological mechanisms of diabetic gastroparesis. Gastric electrical stimulation (GES) is a promising way to treat gastroparesis. This study aimed to explore the impact of GES on ICC together with enteric neurons in diabetic rats and the possible mechanisms involved. ⋯ GES improves the proliferation of ICC possibly related with the 5-HT/5-HT2B signal pathway and alters the enteric nervous system partly though the GDNF expression.