Neuromodulation : journal of the International Neuromodulation Society
-
High-frequency spinal cord stimulation (HF-SCS) is a potential method to provide natural and effective inspiratory muscle pacing in patients with ventilator-dependent spinal cord injuries. Experimental data have demonstrated that HF-SCS elicits physiological activation of the diaphragm and inspiratory intercostal muscles via spinal cord pathways. However, the activation thresholds, extent of activation, and optimal electrode configurations (i.e., lead separation, contact spacing, and contact length) to activate these neural elements remain unknown. Therefore, the goal of this study was to use a computational modeling approach to investigate the direct effects of HF-SCS on the spinal cord and to optimize electrode design and stimulation parameters. ⋯ Our computational modeling and experimental results support the potential advantages of a lead design with longer contacts and larger edge-to-edge contact spacing to maximize inspiratory muscle activation during HF-SCS at the T2 spinal level. While these results need to be further validated in future studies, we believe that the results of this study will help improve the efficacy of HF-SCS technologies for inspiratory muscle pacing.
-
Spinal cord stimulation (SCS) for the treatment of pelvic visceral pains has been understudied and underused. The goal of the current study was to examine multiple stimulation parameters of SCS to determine optimal settings for the inhibition of responses to urinary bladder distension (UBD) in animal models of bladder pain as a guide for human studies. ⋯ Demonstration of inhibitory effects of SCS in a clinically relevant model of bladder pain suggests the potential utility of this therapy in patients with painful bladder disorders.
-
While electroacupuncture (EA) has been used traditionally for the treatment of chronic pain, its analgesic mechanisms have not been fully clarified. We observed in an earlier study that EA could reverse inflammatory pain and suppress high Nav1.7 expression. However, the molecular mechanism underlying Nav1.7 expression regulation is unclear. In this study, we studied the relationship between the glucocorticoid receptor (GR) and Nav1.7 and the role of these molecules in EA analgesia. ⋯ The present study demonstrated that EA exerted anti-hyperalgesic effects by inhibiting GR expression, which led to Nav1.7 expression modulation in the rat model of CFA-induced inflammatory pain.
-
This study aimed to determine whether a short-term repeated stimulation of tibial nerve afferents induces a prolonged modulation effect on the micturition reflex in a decorticated rat model. ⋯ A prolonged poststimulation modulatory effect on the micturition reflex was induced by short-term repeated TNS in decorticated rats. This study provides a theoretical explanation for the clinical benefit of TNS in patients with overactive bladder and suggests decorticated rats as a promising model for further investigation of the neurophysiological mechanisms underlying the bladder inhibitory response induced by TNS.