Journal of clinical monitoring and computing
-
J Clin Monit Comput · Apr 2002
Improving accuracy of the chemiluminescent analyser for measurement of nitric oxide and nitrogen dioxide in respired gas.
The aim of this study was to improve the accuracy of the chemiluminescent analyser in the measurement of nitric oxide (NO) and nitrogen dioxide (NO2) in both dry and humidified gas mixtures containing oxygen (O2) in varying concentrations. This work was performed because initial attempts to determine rate constants for the decay of NO and rates of formation of NO2 were unsuccessful. ⋯ This study indicates that for accurate analysis of NO and NO2 concentrations in airway gases a rigorous calibration of the instrument for the conditions applying in the experiment is mandatory. Once this is achieved the instrument is capable of precise analysis of both gases.
-
New methods of data processing combined with advances in computer technology have revolutionized monitoring of patients under anesthesia. The development of systems based on analysis of brain electrical activity (EEG or evoked potentials) by neural networks has provided impetus to many investigators. Though not claiming to be the end-all in patient monitoring, the potential and efficiency of the combination does indeed stand out. Various strategies are presented and discussed, as well as suggestions for further investigation.
-
J Clin Monit Comput · Apr 2002
Monitoring pulmonary function with superimposed pulmonary gas exchange curves from standard analyzers.
A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. ⋯ This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.
-
J Clin Monit Comput · Apr 2002
Comparative StudyComparison of endotracheal tube and hookwire electrodes for monitoring the vagus nerve.
Monitoring the vagus nerve and the recurrent laryngeal nerve during surgical procedures may reduce the probability of significant nerve injury. As such, a number of methods to monitor these nerves have been devised including placing electrodes directly into the vocal cords or recording from surface electrodes. In direct comparison, monitoring the identical muscles, bipolar hookwire electrodes displayed approximately one order of magnitude greater amplitude, of both spontaneously occurring and evoked electrical activity than double wire endotracheal tube electrodes. The enhanced sensitivity of the hookwire electrodes, despite the technical difficulties with placement, suggests their use when maximum sensitivity is required.