Journal of clinical monitoring and computing
-
J Clin Monit Comput · Apr 2002
Real-time pulse oximetry artifact annotation on computerized anaesthetic records.
Adoption of computerised anaesthesia record keeping systems has been limited by the concern that they record artifactual data and accurate data indiscriminately. Data resulting from artifacts does not reflect the patient's true condition and presents a problem in later analysis of the record, with associated medico-legal implications. This study developed an algorithm to automatically annotate pulse oximetry artifacts and sought to evaluate the algorithm's accuracy in routine surgical procedures. ⋯ The real-time artifact detection algorithm developed in this study was more accurate than anaesthetists who post-operatively reviewed records produced by an existing computerised anaesthesia record keeping system. Algorithms have the potential to more accurately identify and annotate artifacts on computerised anaesthetic records, assisting clinicians to more correctly interpret abnormal data.
-
J Clin Monit Comput · Apr 2002
Improving accuracy of the chemiluminescent analyser for measurement of nitric oxide and nitrogen dioxide in respired gas.
The aim of this study was to improve the accuracy of the chemiluminescent analyser in the measurement of nitric oxide (NO) and nitrogen dioxide (NO2) in both dry and humidified gas mixtures containing oxygen (O2) in varying concentrations. This work was performed because initial attempts to determine rate constants for the decay of NO and rates of formation of NO2 were unsuccessful. ⋯ This study indicates that for accurate analysis of NO and NO2 concentrations in airway gases a rigorous calibration of the instrument for the conditions applying in the experiment is mandatory. Once this is achieved the instrument is capable of precise analysis of both gases.
-
J Clin Monit Comput · Apr 2002
Representation of somatosensory evoked potentials using discrete wavelet transform.
Somatosensory evoked potentials (SEP) have been shown to be a useful tool in monitoring of the central nervous system (CNS) during anaesthesia. SEP analysis is usually performed by an experienced human operator. For automatic analysis, appropriate parameter extraction and signal representation methods are required. The aim of this work is to evaluate the discrete wavelet transform (DWT) as such a method for an SEP representation. ⋯ The discrete wavelet transformation provides an efficient tool for SEP representation and parameterisation. Depending on the specific problem the DWT, can be adjusted to the desired accuracy, which is important for the subsequent development of automatic SEP analysers.
-
J Clin Monit Comput · Apr 2002
Averaging improves the quality of impedance stroke volume measurements during the head up tilt test.
To assess the improvement in quality following averaging data from two or more tilts in the stroke volume (SV) response curve during a head-up tilt test. ⋯ Impedance measurements can be very variable, making the assessment of SV changes during a head-up tilt test difficult. By averaging the data from several tilts one can improved the quality of the SV wavelet sufficiently to identify important postural changes.
-
J Clin Monit Comput · Apr 2002
Monitoring pulmonary function with superimposed pulmonary gas exchange curves from standard analyzers.
A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. ⋯ This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.