Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2012
Radial-femoral concordance in time and frequency domain-based estimates of systemic arterial respiratory variation.
Commonly used arterial respiratory variation metrics are based on mathematical analysis of arterial waveforms in the time domain. Because the shape of the arterial waveform is dependent on the site at which it is measured, we hypothesized that analysis of the arterial waveform in the frequency domain might provide a relatively site-independent means of measuring arterial respiratory variation. Radial and femoral arterial blood pressures were measured in nineteen patients undergoing liver transplantation. ⋯ Assuming a PPV treatment threshold of 12 % (or equivalent), differences in treatment decisions based on radial or femoral estimates would arise in 12, 14, 5.4, 5.7, 4.8, and 5.5 % of minutes for SPV, PPV, AUCV, MAPV, spectral peak ratio, and spectral power ratio, respectively. As compared to frequency domain-based estimates of respiratory variation, SPV and PPV are relatively dependent on the anatomic site at which they are measured. Spectral peak and power ratios are relatively site-independent means of measuring respiratory variation, and may offer a useful alternative to time domain-based techniques.
-
The transpulmonary thermodilution technique (TPTD) is a safe, multi-parametric advanced cardiopulmonary monitoring technique that provides important parameters required for making decisions in critically ill patients. The TPTD provides more reliable indicators of preload than filling pressures, the unique measurement of extravascular lung water (EVLW) and comparable accuracy in measuring cardiac output (CO). Intermittent measurement of the CO by TPTD when coupled with pulse contour analysis, offer automatic calibration of continuous CO, as well as accurate assessment of volumetric preload, fluid responsiveness and EVLW. TPTD-guided algorithms have been shown to improve the management of high-risk surgical and critically ill patients.
-
J Clin Monit Comput · Oct 2012
ReviewHemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference.
The difference between mixed venous blood carbon dioxide tension (PvCO(2)) and arterial carbon dioxide tension (PaCO(2)), called ∆PCO(2) has been proposed to better characterize the hemodynamic status. It depends on the global carbon dioxide (CO(2)) production, on cardiac output and on the complex relation between CO(2) tension and CO(2) content. ⋯ The difference between central venous CO(2) tension and arterial CO(2) tension, which is easy to obtain can substitute for ∆PCO(2) to assess the adequacy of cardiac output. Differences between local tissue CO(2) tension and arterial CO(2) tension can also be obtained and provide data on the adequacy of local blood flow to the local metabolic conditions.
-
J Clin Monit Comput · Oct 2012
ReviewBedside echocardiography in critically ill patients: a true hemodynamic monitoring tool.
Echocardiography is a versatile, accurate and noninvasive tool suited to examination of shocked patients. Since the 1980s, intensive care practitioners have used ultrasound widely for hemodynamic evaluation and for cardiac anatomy visualization. ⋯ We will also report the main indications of echocardiography and the corresponding parameters. Finally, we will indicate educational programs and define minimum training that enable self-sufficiency.
-
Recent advance in imaging modalities used frequently in clinical routine can provide description of the geometrical and hemodynamical properties of the arterial tree in great detail. The combination of such information with models of blood flow of the arterial tree can provide further information, such as details in pressure and flow waves or details in the local flow field. Such knowledge maybe be critical in understanding the development or state of arterial disease and can help clinicians perform better diagnosis or plan better treatments. ⋯ Our development of a generic and patient-specific model of the human arterial tree permitting to study pressure and flow waves propagation in patients is presented. The predicted pressure and flow waveforms are in good agreement with the in vivo measurements. We discuss the utility of these models in different clinical application and future development of interest.