Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2016
Randomized Controlled TrialAlgorithms that eliminate the effects of calibration artefact and trial-imposed offsets of Masimo oximeter in BOOST-NZ trial.
The displayed readings of Masimo pulse oximeters used in the Benefits Of Oxygen Saturation Targeting (BOOST) II and related trials in very preterm babies were influenced by trial-imposed offsets and an artefact in the calibration software. A study was undertaken to implement new algorithms that eliminate the effects of offsets and artefact. In the BOOST-New Zealand trial, oxygen saturations were averaged and stored every 10 s up to 36 weeks' post-menstrual age. ⋯ The resulting distributions were very close to those obtained from the Siemens oximeter. The artefact and offsets of the Masimo oximeter's software had been addressed to determine the true saturation readings through the use of novel algorithms. The implementation would enable New Zealand data be included in the meta-analysis of BOOST II trials, and be used in neonatal oxygen studies.
-
J Clin Monit Comput · Oct 2016
Review Meta AnalysisAccuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis.
Several minimally-invasive technologies are available for cardiac output (CO) measurement in children, but the accuracy and precision of these devices have not yet been evaluated in a systematic review and meta-analysis. We conducted a comprehensive search of the medical literature in PubMed, Cochrane Library of Clinical Trials, Scopus, and Web of Science from its inception to June 2014 assessing the accuracy and precision of all minimally-invasive CO monitoring systems used in children when compared with CO monitoring reference methods. Pooled mean bias, standard deviation, and mean percentage error of included studies were calculated using a random-effects model. ⋯ Although the pooled bias was small, the mean pooled percentage error was in the gray zone of clinical applicability. In the sub-group analysis, electrical cardiometry was the device that provided the most accurate measurement. However, a high heterogeneity between studies was found, likely due to a wide range of study characteristics.
-
J Clin Monit Comput · Oct 2016
Randomized Controlled TrialRocuronium: automatic infusion versus manual administration with TOF monitorisation.
TOF (train-of-four) monitoring provides objective data in application of neuromuscular blocking agent. Thus, applicator-based differences are eliminated and optimum muscle relaxation is maintained during operation. In the present study, we aimed to compare the effects of target-controlled infusion system and standard TOF monitoring, on use of rocuronium. ⋯ There was no clinical evidence of residual neuromuscular blockage or reoccurrence of neuromuscular blockage in any patient in either group. Both methods can be used for administration of neuromuscular blocker agent during moderate time anesthesia. No advantage was noted when rocuronium was administered via automatical infusion pump during anaesthesia.
-
J Clin Monit Comput · Oct 2016
The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults.
To compare the performance of a bioreactance cardiac output (CO) monitor (NICOM) and transcutaneous Doppler (USCOM) during head up tilting (HUT). Healthy young adult subjects, age 22 ± 1 years, 7 male and 7 female, were tilted over 3-5 s from supine to 70° HUT, 30° HUT and back to supine. Positions were held for 3 min. ⋯ TFC decreased linearly with HUT. The NICOM does not provide linear changes in SV as predicted by physiology when patients are tilted. Furthermore there is a lack of agreement with USCOM measurements at baseline and during tilting.
-
J Clin Monit Comput · Oct 2016
Comparative StudyComparison of the ability of two continuous cardiac output monitors to measure trends in cardiac output: estimated continuous cardiac output measured by modified pulse wave transit time and an arterial pulse contour-based cardiac output device.
Estimated continuous cardiac output (esCCO), a noninvasive technique for continuously measuring cardiac output (CO), is based on modified pulse wave transit time, which in turn is determined by pulse oximetry and electrocardiography. However, its trending ability has never been evaluated in patients undergoing non-cardiac surgery. Therefore, this study examined esCCO's ability to detect the exact changes in CO, compared with currently available arterial waveform analysis methods, in patients undergoing kidney transplantation. ⋯ And corrected precision for repeated measures was 1.37 L min(-1) (percentage error for repeated measures, 42.5 %). The concordance rate was 89.7 %, with a mean angular bias of -3.3° and radial limits of agreement of ±42.2°. This study demonstrated that the trending ability of the esCCO system is not clinically acceptable, as judged by polar plots analysis; however, its trending ability is clinically acceptable based on a concordance analysis, and is comparable with currently available arterial waveform analysis methods.