Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2016
Comparative StudyComparison of the ability of two continuous cardiac output monitors to measure trends in cardiac output: estimated continuous cardiac output measured by modified pulse wave transit time and an arterial pulse contour-based cardiac output device.
Estimated continuous cardiac output (esCCO), a noninvasive technique for continuously measuring cardiac output (CO), is based on modified pulse wave transit time, which in turn is determined by pulse oximetry and electrocardiography. However, its trending ability has never been evaluated in patients undergoing non-cardiac surgery. Therefore, this study examined esCCO's ability to detect the exact changes in CO, compared with currently available arterial waveform analysis methods, in patients undergoing kidney transplantation. ⋯ And corrected precision for repeated measures was 1.37 L min(-1) (percentage error for repeated measures, 42.5 %). The concordance rate was 89.7 %, with a mean angular bias of -3.3° and radial limits of agreement of ±42.2°. This study demonstrated that the trending ability of the esCCO system is not clinically acceptable, as judged by polar plots analysis; however, its trending ability is clinically acceptable based on a concordance analysis, and is comparable with currently available arterial waveform analysis methods.
-
J Clin Monit Comput · Oct 2016
Comparative StudyComparison of end-tidal CO2 measured by transportable capnometer (EMMA™ capnograph) and arterial pCO2 in general anesthesia.
An end-tidal CO2 monitor (capnometer) is used most often as a noninvasive substitute for PaCO2 in anesthesia, anesthetic recovery, and intensive care. Additionally, the wide spread on-site use of portable capnometers in emergency and trauma situations is now observed. This study was conducted to compare PaCO2 measurement between the EMMA™ portable-capnometer and sidestream capnometry. ⋯ The percent error was 13.0 %. Significant differences between the PETCO2 and PaCO2 values of the EMMA™ portable-capnometer were not observed for patients undergoing general anesthesia. ClinicalTrials.gov identifier NCT02184728.
-
J Clin Monit Comput · Oct 2016
Observational StudyNon-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.
Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. ⋯ The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.
-
J Clin Monit Comput · Oct 2016
Changes in cerebral oxygen saturation during transcatheter aortic valve replacement.
Cerebral oxygen saturation (rSO2) is a non-invasive monitor used to monitor cerebral oxygen balance and perfusion. Decreases in rSO2 >20 % from baseline have been associated with cerebral ischemia and increased perioperative morbidity. During transcatheter aortic valve replacement (TAVR), hemodynamic manipulation with ventricular pacing up to 180 beats per minute is necessary for valve deployment. ⋯ Furthermore, baseline rSO2 in this population was at the lower limit of the published normal range. Significant cerebral desaturation during valve deployment may potentially be limited by maximizing rSO2 after anesthetic induction. Future studies should attempt to correlate recovery in rSO2 with recovery of hemodynamics and cardiac function, provide detailed neurological assessments pre and post procedure, determine the most effective method of maximizing rSO2 prior to hemodynamic manipulation, and provide the most rapid method of recovery of rSO2 following valve deployment.
-
J Clin Monit Comput · Oct 2016
Respiratory modulations in the photoplethysmogram (DPOP) as a measure of respiratory effort.
DPOP is a measure of the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive parameter for the prediction of the response to volume expansion in hypovolemic patients. The effect of resistive breathing on the DPOP parameter was studied to determine whether it may have an adjunct use as a measure of respiratory effort. ⋯ Further, a relationship between DPOP and percent modulation of the pleth waveform was observed. A version of the DPOP algorithm that corrects for low perfusion was implemented which resulted in an improved relationship between DPOP and PPV. Although a limited cohort of seven volunteers was used, the results suggest that DPOP may be useful as a respiratory effort parameter, given that the fluid level of the patient is maintained at a constant level over the period of analysis.