Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2016
Multicenter Study Comparative StudyContinuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock.
Septic shock is a serious medical condition. With increased concerns about invasive techniques, a number of non-invasive and semi-invasive devices measuring cardiac output (CO) have become commercially available. The aim of the present study was to determine the accuracy, precision and trending abilities of the FloTrac and the continuous pulmonary artery catheter thermodilution technique determining CO in septic shock patients. ⋯ Trend analysis showed a concordance of 85 and 81 % for APCO and CCO, respectively. In contrast to CCO, APCO was influenced by systemic vascular resistance and by mean arterial pressure. In septic shock patients, APCO measurements assessed by FloTrac but also the established CCO measurements using the PAC did not meet the currently accepted statistical criteria indicating acceptable clinical performance.
-
Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. ⋯ While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels.
-
Current hypoxic guards systems fail to maintain the inspired O2 concentration (FIO2) ≥ 21 % across the entire fresh gas flow (FGF) range when a second carrier gas is used (N2O or air). We examined the performance of the Maquet O2 Guard(®), a smart hypoxic guard that increases O2 delivery if an inspired hypoxic mixture is formed. After obtaining IRB approval and informed consent, 12 ASA I-II patients were enrolled. ⋯ FDO2 was increased to 60 % and FGF to 1 L min(-1) (the latter only if it was lower than 1 L min(-1) prior to activation of the O2 Guard). FIO2 increased to 25 % within 55 s after O2 Guard activation in all patients. The O2 Guard(®), an active inspired hypoxic guard, rapidly reverses and limits the duration of inspired hypoxic episodes when the delivered hypoxic guard fails to do so.
-
J Clin Monit Comput · Feb 2016
ReviewJournal of Clinical Monitoring and Computing 2015 end of year summary: respiration.
This paper reviews 17 papers or commentaries published in Journal of Clinical Monitoring and Computing in 2015, within the field of respiration. Papers were published covering monitoring and training of breathing, monitoring of gas exchange, hypoxemia and acid-base, and CO2 monitoring.
-
J Clin Monit Comput · Feb 2016
ReviewJournal of Clinical Monitoring and Computing 2015 end of year summary: anesthesia.
Clinical monitoring is an essential part of the profession of anesthesiology. It would therefore be impossible to review all articles published in the Journal of Clinical Monitoring and Computing that are relevant to anesthesia. Because other reviews will address monitoring of the respiratory and cardiovascular system, the current review will limit itself to topics uniquely related to anesthesia. The topics are organized according to the chronological order in which an anesthetic proceeds: secure the airway; ventilate and deliver anesthetic gases; monitor vital organ function and anesthetic depth; and ensure analgesia during/after emergence from anesthesia (locoregional anesthesia and pain control).