Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2017
ReviewJournal of Clinical Monitoring and Computing 2016 end of year summary: cardiovascular and hemodynamic monitoring.
The assessment and optimization of cardiovascular and hemodynamic variables is a mainstay of patient management in the care for critically ill patients in the intensive care unit (ICU) or the operating room (OR). It is, therefore, of outstanding importance to meticulously validate technologies for hemodynamic monitoring and to study their applicability in clinical practice and, finally, their impact on treatment decisions and on patient outcome. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) is an ideal platform for publishing research in the field of cardiovascular and hemodynamic monitoring. In this review, we highlight papers published last year in the JCMC in order to summarize and discuss recent developments in this research area.
-
J Clin Monit Comput · Feb 2017
ReviewJournal of clinical monitoring and computing 2016 end of year summary: anesthesia.
Clinical monitoring and computing are essential during general anesthesia. As a result it would be impossible to review all the articles published in the Journal of Clinical Monitoring and Computing that are relevant to anesthesia. We therefore will limit this summary to those articles that are uniquely related to anesthesia. The topics include: anesthesia machines; ensuring the airway; anesthetic depth; neuromuscular transmission monitoring; locoregional anesthesia; ultrasound; and pain.
-
J Clin Monit Comput · Feb 2017
ReviewUsing the features of the time and volumetric capnogram for classification and prediction.
Quantitative features derived from the time-based and volumetric capnogram such as respiratory rate, end-tidal PCO2, dead space, carbon dioxide production, and qualitative features such as the shape of capnogram are clinical metrics recognized as important for assessing respiratory function. Researchers are increasingly exploring these and other known physiologically relevant quantitative features, as well as new features derived from the time and volumetric capnogram or transformations of these waveforms, for: (a) real-time waveform classification/anomaly detection, (b) classification of a candidate capnogram into one of several disease classes, (c) estimation of the value of an inaccessible or invasively determined physiologic parameter, (d) prediction of the presence or absence of disease condition, (e) guiding the administration of therapy, and (f) prediction of the likely future morbidity or mortality of a patient with a presenting condition. The work to date with respect to these applications will be reviewed, the underlying algorithms and performance highlighted, and opportunities for the future noted.
-
J Clin Monit Comput · Feb 2017
ReviewReproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review.
Measuring cardiac output (CO) is an integral part of the diagnostic and therapeutic strategy in critically ill patients. During the last decade, the single transpulmonary thermodilution (TPTD) technique was implemented in clinical practice. The purpose of this paper was to systematically review and critically assess the existing data concerning the reproducibility of CO measured using TPTD (COTPTD). ⋯ Achieving more than 3 boluses did not improve reproducibility; however, achieving less than 3 boluses significantly affects the reproducibility of this technique. The present results emphasize that TPTD is a highly reproducible technique for monitoring CO in critically ill patients, especially in the pediatric population. Our findings suggest that obtaining a mean of 3 measurements for determining CO values is recommended.
-
J Clin Monit Comput · Feb 2017
ReviewReproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review.
Measuring cardiac output (CO) is an integral part of the diagnostic and therapeutic strategy in critically ill patients. During the last decade, the single transpulmonary thermodilution (TPTD) technique was implemented in clinical practice. The purpose of this paper was to systematically review and critically assess the existing data concerning the reproducibility of CO measured using TPTD (COTPTD). ⋯ Achieving more than 3 boluses did not improve reproducibility; however, achieving less than 3 boluses significantly affects the reproducibility of this technique. The present results emphasize that TPTD is a highly reproducible technique for monitoring CO in critically ill patients, especially in the pediatric population. Our findings suggest that obtaining a mean of 3 measurements for determining CO values is recommended.