Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2019
Pediatric blood pressures during anesthesia assessed using normalization and principal component analysis techniques.
Expected values for blood pressure are known for both unanesthetized and anesthetized children. The statistics of changes in blood pressure during anesthesia, which may have important diagnostic significance, have not been reported. The purpose of this study was to report the variation in changes in blood pressure in four pediatric age groups, undergoing both cardiac and non-cardiac surgery. ⋯ Variations in systolic blood pressure over a 5-min period were wider: in non-cardiac from 0.1 (12.2) mmHg (first month) to 0.4 (11.5) mmHg (5-6 year old) and from 0.2 (12.5) to 0.4 (14.2) mmHg in cardiac cases. Absolute blood pressures and changes in blood pressure during anesthesia in pediatric cardiac and non-cardiac surgical cases have been analyzed from a population database. Using these values, the quantitative methods of normalization and principal component analysis allow the identification of statistically significant changes.
-
J Clin Monit Comput · Aug 2019
Comparative Study Observational StudyEvaluation of cardiac output variations with the peripheral pulse pressure to mean arterial pressure ratio.
Cardiac output (CO) optimisation during surgery reduces post-operative morbidity. Various methods based on pulse pressure analysis have been developed to overcome difficulties to measure accurate CO variations in standard anaesthetic settings. Several of these methods include, among other parameters, the ratio of pulse pressure to mean arterial pressure (PP/MAP). ⋯ After PE (n = 256) and NA (n = 121) boluses, ΔPPrad/MAP positively tracked ΔCO (r = 0.53 and 0.41 respectively, p < 0.001). By contrast, there was no relation between ΔPPrad/MAP and ΔCO after EP boluses (r = 0.10, p = 0.39). ΔPPrad/MAP tracked ΔCO variations during PE and NA vasopressor challenges. However, after positive fluid challenge or EP boluses, ΔPPrad/MAP was not as performant to track ΔCO which could make the use of this ratio difficult in current clinical practice.
-
Hospital noise levels regularly exceed those recommended by the World Health Organization (WHO). It is uncertain whether high noise levels have adverse effects on patient health. High levels of noise increase patient sleep loss, anxiety levels, length of hospital stay, and morbidity rates. ⋯ The Hospital Consumer Assessment of Healthcare Providers and Systems survey shows a slight improvement in overall hospital noise levels in the United States, indicating a minor reduction in noise levels. Alarm ambiguity, alarm masking and inefficient alarm design contributes to a large portion of sounds that exceed the environmental noise level in the hospital. Improving the hospital soundscape can begin by training staff in noise reduction, enforcing noise reduction programs, reworking alarm design and encouraging research to evaluate the relative effects of noise producing stimuli on the hospital soundscape.
-
J Clin Monit Comput · Aug 2019
Impact of predictive analytics based on continuous cardiorespiratory monitoring in a surgical and trauma intensive care unit.
Predictive analytics monitoring, the use of patient data to provide continuous risk estimation of deterioration, is a promising new application of big data analytical techniques to the care of individual patients. We tested the hypothesis that continuous display of novel electronic risk visualization of respiratory and cardiovascular events would impact intensive care unit (ICU) patient outcomes. In an adult tertiary care surgical trauma ICU, we displayed risk estimation visualizations on a large monitor, but in the medical ICU in the same institution we did not. ⋯ Following implementation, the incidence of septic shock fell by half (p < 0.01 in a multivariate model that included age and APACHE) in the surgical trauma ICU, where the data were continuously on display, but by only 10% (p = NS) in the control Medical ICU. There were no significant changes in the other outcomes. Display of a predictive analytics monitor based on continuous cardiorespiratory monitoring was followed by a reduction in the rate of septic shock, even when controlling for age and APACHE score.
-
J Clin Monit Comput · Aug 2019
Intraoperative neuromonitoring of anterior root muscle response during hip surgery under spinal anesthesia.
The aim of this study was to evaluate the anterior root muscle (ARM) response monitorability during total hip arthroplasty (THA) under spinal anesthesia. A total of 20 adults (64.6 ± 13.87 years old) were monitored using ARM response and free-run electromyography during THA. To elicit the ARM response from muscles, percutaneous stimulation of the lumbosacral roots was performed by self-adhesive electrodes placed over the skin of the projection of the first and third lumbar interspinous space (anode) and over the abdominal skin of the umbilicus (cathode). ⋯ The mean latencies and amplitude values of the ARM response from muscles were as follows: 8.8 ± 1.4 ms; 98.8 ± 114.5 µV for RF; 9.8 ± 2.1 ms; 119.1 ± 122.23 µV for VL; 9.5 ± 1.6 ms; 39.6 ± 30.3 µV for BF; 15.1 ± 1.9 ms; 146.6 ± 150.9 µV for TA; 15.6 ± 2.4 ms; 81.0 ± 99.9 µV for Gastrocnemius. The present study demonstrates that the ARM response could easily and safely be obtained during THA under spinal anesthesia. This non-invasive technique may have a potential to detect early neurological deficit in patients who need complex hip surgery under spinal anesthesia.