Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2021
A new reliable acoustic respiratory monitoring technology during upper gastrointestinal tract therapeutic endoscopy with CO2 insufflation.
Previous studies documented the effectiveness and benefits of capnography monitoring during propofol-based sedation for colonoscopy to reduce the incidence of hypoxemia. However, the performance of capnography during longer duration endoscopic therapy of upper gastrointestinal tract cancers under CO2 insufflation it is not well known. In this study, we compare a new device with acoustic monitoring technology to standard capnography monitoring. ⋯ The ratio of unmeasurable respiratory rate by capnography was strongly correlated to the ratio of unmeasurable PETCO2 level by capnography (R2 = 0.847). There were no severe events or adverse events (grade 2 or more) during all 49 procedures. The acoustic monitoring technology provides a more reliable respiratory monitoring when compared to standard capnography during endoscopic resection of upper gastrointestinal tract cancers under CO2 insufflation, even if the procedures were prolonged and complex.
-
J Clin Monit Comput · Aug 2021
Non-invasive assessment of respiratory muscle activity during pressure support ventilation: accuracy of end-inspiration occlusion and least square fitting methods.
Pressure support ventilation (PSV) should be titrated considering the pressure developed by the respiratory muscles (Pmusc) to prevent under- and over-assistance. The esophageal pressure (Pes) is the clinical gold standard for Pmusc assessment, but its use is limited by alleged invasiveness and complexity. The least square fitting method and the end-inspiratory occlusion method have been proposed as non-invasive alternatives for Pmusc assessment. ⋯ Both Pmusc,lsf ≤ 4 cmH2O and Pmusc,index ≤ 1 cmH2O had excellent negative predictive value [0.98 (95% CI 0.94-1) and 0.96 (95% CI 0.91-0.99), respectively)] to identify over-assistance. The inspiratory effort during PSV could not be accurately estimated by the least square fitting or end-inspiratory occlusion method because the limits of agreement were far above the signal size. These non-invasive approaches, however, could be used to screen patients at risk for absent or minimal respiratory muscles activation to prevent the ventilator-induced diaphragmatic dysfunction.
-
J Clin Monit Comput · Aug 2021
Randomized Controlled TrialComparison of haemodynamic- and electroencephalographic-monitored effects evoked by four combinations of effect-site concentrations of propofol and remifentanil, yielding a predicted tolerance to laryngoscopy of 90.
This prospective study evaluates haemodynamic and electroencephalographic effects observed when administering four combinations of effect-site concentrations of propofol (CePROP) and remifentanil (CeREMI), all yielding a single predicted probability of tolerance of laryngoscopy of 90% (PTOL = 90%) according to the Bouillon interaction model. We aimed to identify combinations of CePROP and CeREMI along a single isobole of PTOL that result in favourable hypnotic and haemodynamic conditions. This knowledge could be of advantage in the development of drug advisory monitoring technology. 80 patients (18-90 years of age, ASA I-III) were randomized into four groups and titrated towards CePROP (Schnider model, ug⋅ml-1) and CeREMI (Minto model, ng⋅ml-1) of respectively 8.6 and 1, 5.9 and 2, 3.6 and 4 and 2.0 and 8. ⋯ This study provides clinical insight on the haemodynamic and hypnotic consequences, when a model based predicted PTOL is used as a target for combined effect-site controlled target- controlled infusion of propofol and remifentanil. Heart rate and bispectral index were significantly different between groups despite a theoretical equipotency for PTOL, suggesting that each component of the anaesthetic state (immobility, analgesia, and hypnotic drug effect) should be considered as independent neurophysiological and pharmacological phenomena. However, claims of (in)accuracy of the predicted PTOL must be considered preliminary because larger numbers of observations are required for that goal.
-
J Clin Monit Comput · Aug 2021
Evaluation of the relationship between slow-waves of intracranial pressure, mean arterial pressure and brain tissue oxygen in TBI: a CENTER-TBI exploratory analysis.
Brain tissue oxygen (PbtO2) monitoring in traumatic brain injury (TBI) has demonstrated strong associations with global outcome. Additionally, PbtO2 signals have been used to derive indices thought to be associated with cerebrovascular reactivity in TBI. However, their true relationship to slow-wave vasogenic fluctuations associated with cerebral autoregulation remains unclear. ⋯ PbtO2 does not appear to reliably respond in time to slow-wave fluctuations in MAP, as demonstrated on various VARIMA models across all patients. These findings suggest that PbtO2 should not be utilized in the derivation of cerebrovascular reactivity metrics in TBI, as it does not appear to be responsive to changes in MAP in the slow-waves. These findings corroborate previous results regarding PbtO2 based cerebrovascular reactivity indices.
-
J Clin Monit Comput · Aug 2021
Cautionary findings for motor evoked potential monitoring in intracranial aneurysm surgery after a single administration of rocuronium to facilitate tracheal intubation.
Administration of rocuronium to facilitate intubation has traditionally been regarded as acceptable for intraoperative motor evoked potential (MEP) monitoring because of sufficiently rapid spontaneous neuromuscular blockade recovery. We hypothesized that residual neuromuscular blockade, in an amount that could hinder optimal neuromonitoring in patients undergoing intracranial aneurysm clipping, was still present at dural opening. We sought to identify how often this was occurring and to identify factors which may contribute to prolonged blockade. ⋯ There was no significant association between dosage of rocuronium based on total body weight, age, sex, or body temperature and prolonged recovery time. This study demonstrates that the duration of relaxation for MEP monitoring purposes is well-beyond the routinely recognized clinical duration of rocuronium. Residual neuromuscular blockade could result in lower amplitude MEP signals and/or lead to higher required MEP stimulus intensities which can both compromise monitoring sensitivity.