Journal of clinical monitoring and computing
-
J Clin Monit Comput · Jun 2022
Comparison of renal region, cerebral and peripheral oxygenation for predicting postoperative renal impairment after CABG.
Patients undergoing coronary artery bypass grafting (CABG) are at risk of developing postoperative renal impairment, amongst others caused by renal ischemia and hypoxia. Intra-operative monitoring of renal region tissue oxygenation (SrtO2) might be a useful tool to detect renal hypoxia and predict postoperative renal impairment. Therefore, the aim of this study was to assess the ability of intra-operative SrtO2 to predict postoperative renal impairment, defined as an increase of serum creatinine concentrations of > 10% from individual baseline, and compare this with the predictive abilities of peripheral and cerebral tissue oxygenation (SptO2 and SctO2, respectively) and renal specific tissue deoxygenation. ⋯ Tissue oxygenation of the renal region, although non-invasively and continuously available, cannot be used in adults to predict postoperative renal impairment after CABG. Instead, peripheral tissue deoxygenation was able to predict postoperative renal impairment, suggesting that SptO2 provides a better indication of 'general' tissue oxygenation status. Registered at ClinicalTrials.gov: NCT01347827, first submitted April 27, 2011.
-
J Clin Monit Comput · Jun 2022
Bayesian hierarchical modeling of operating room times for surgeries with few or no historic data.
In this work it is proposed a modeling for operating room times based on a Bayesian Hierarchical structure. Specifically, it is employed a Bayesian generalized linear mixed model with an additional hierarchical level on the random effects. This configuration allows the estimation of operating room times (ORT) with few or no historical observations, without requiring a prior surgeon's estimate. ⋯ We find that lognormal models outperform the gamma models in estimating upper prediction bounds (UB). Especially, the best ORT predictions for cases with few or no historical data (i.e., between 0 and 3 historical cases) are obtained with the [Formula: see text], SBeta2 model. With a deviation of less than 1% with respect to the nominal coverage of the upper bound predictions UB80% and UB90% and an average absolute percentage error of 38.5% in the point estimate.
-
J Clin Monit Comput · Jun 2022
ReviewPower spectrum and spectrogram of EEG analysis during general anesthesia: Python-based computer programming analysis.
The commonly used principle for measuring the depth of anesthesia involves changes in the frequency components of the electroencephalogram (EEG) under general anesthesia. Therefore, it is essential to construct an effective spectrum and spectrogram to analyze the relationship between the depth of anesthesia and the EEG frequency during general anesthesia. This paper reviews the computer programming techniques for analyzing the spectrum and spectrogram derived from a single-channel EEG recorded during general anesthesia. ⋯ Finally, the multitaper method, which can suppress artifacts caused by the edges of the analysis segments, suppress noise, and probabilistically infer values that are close to the real power spectral density, is explained using practical examples of the analysis. All analyses were performed and all graphs plotted using Python under Jupyter Notebook. The analyses demonstrated the effectiveness of Python-based programming under the integrated development environment Jupyter Notebook for constructing an effective spectrum and spectrogram for analyzing the relationship between the depth of anesthesia and EEG frequency analysis in general anesthesia.
-
This paper provides a review of a selection of papers published in the Journal of Clinical Monitoring and Computing in 2020 and 2021 highlighting what is new within the field of respiratory monitoring. Selected papers cover work in pulse oximetry monitoring, acoustic monitoring, respiratory system mechanics, monitoring during surgery, electrical impedance tomography, respiratory rate monitoring, lung ultrasound and detection of patient-ventilator asynchrony.
-
J Clin Monit Comput · Jun 2022
In vitro validation and characterization of pulsed inhaled nitric oxide administration during early inspiration.
Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration. ⋯ Pulsed early inspiratory phase NO injection is as effective as continuous or non-selective admixture of NO to inspired gas and may confer improved target reliability, especially at low, lung protective tidal volumes.