Journal of clinical monitoring and computing
-
J Clin Monit Comput · Jun 2022
Observational StudyBioreactance-derived haemodynamic parameters in the transitional phase in preterm neonates: a longitudinal study.
Bioreactance (BR) is a novel, non-invasive technology that is able to provide minute-to-minute monitoring of cardiac output and additional haemodynamic variables. This study aimed to determine the values for BR-derived haemodynamic variables in stable preterm neonates during the transitional period. A prospective observational study was performed in a group of stable preterm (< 37 weeks) infants in the neonatal service of Tygerberg Children's Hospital, Cape Town, South Africa. ⋯ To our knowledge, this is the first paper to present longitudinal BR-derived haemodynamic variable data in a cohort of stable preterm infants, not requiring invasive ventilation or inotropic support, during the first 72 h of life. Bioreactance-derived haemodynamic monitoring is non-invasive and offers the ability to simultaneously monitor numerous haemodynamic parameters of global systemic blood flow. Moreover, it may provide insight into transitional physiology and its pathophysiology.
-
The BIS and Entropy systems are used as indicators of anaesthetic drug effect, and can also record EEGs in digital form. A number of studies have used such recordings for analysis, even though information about bandwidth and fidelity has not been provided by the manufacturers. In this study we consider these systems purely as EEG recording devices, and evaluate their suitability for quantitative analysis. ⋯ The Entropy 100 Hz recording in the Datex-Ohmeda S/5 monitor has a flawed implementation, leading to aliasing of signals over 50 Hz and potential distortion of the recording, while in the GE Carescape it has an uneven response and a narrowed bandwidth. Consequently, it is important to know which specific host monitor was used when an Entropy 100 Hz recording was made. In summary, the choice of recording device and host monitor may affect the results of some quantitative EEG analysis, and some previously published studies may need to be re-evaluated.
-
J Clin Monit Comput · Jun 2022
The effect of COVID-19 epidemic on vital signs in hospitalized patients: a pre-post heat-map study from a large teaching hospital.
The Lombardy SARS-CoV-2 outbreak in February 2020 represented the beginning of COVID-19 epidemic in Italy. Hospitals were flooded by thousands of patients with bilateral pneumonia and severe respiratory, and vital sign derangements compared to the standard hospital population. We propose a new visual analysis technique using heat maps to describe the impact of COVID-19 epidemic on vital sign anomalies in hospitalized patients. ⋯ COVID-19 epidemic profoundly affected the incidence of severe derangements in vital signs in a large academic hospital. We validated heat maps as a method to analyze the clinical stability of hospitalized patients. This method may help to improve resource allocation according to patient characteristics.
-
J Clin Monit Comput · Jun 2022
Observational StudyUltrasonic cardiac output monitor provides effective non-invasive bedside measurements of neonatal cardiac output.
This study determined the accuracy and validity for the haemodynamic parameters of haemodynamically stable neonates after postnatal circulatory adaptation using the ultrasonic cardiac output monitor (USCOM) in comparison with echocardiography. We conducted a prospective, observational study of neonates born at 23-41 weeks of gestation. They all underwent both echocardiography and USCOM assessments for comparison purposes. ⋯ A larger bias was observed in cases with higher left ventricular output. Bland-Altman analysis confirmed no significant bias, with acceptable limits of agreement between these two methods. There was a very good correlation between the USCOM and echocardiographic methods when we used them to measure cardiac output in neonates.
-
J Clin Monit Comput · Jun 2022
Development of an automated closed-loop β-blocker delivery system to stably reduce myocardial oxygen consumption without inducing circulatory collapse in a canine heart failure model: a proof of concept study.
Beta-blockers are well known to reduce myocardial oxygen consumption (MVO2) and improve the prognosis of heart failure (HF) patients. However, its negative chronotropic and inotropic effects limit their use in the acute phase of HF due to the risk of circulatory collapse. In this study, as a first step for a safe β-blocker administration strategy, we aimed to develop and evaluate the feasibility of an automated β-blocker administration system. ⋯ We demonstrated the feasibility of an automated β-blocker administration system in a canine model of acute HF. The system controlled AP and PLA to avoid circulatory collapse, and reduced MVO2 significantly. As the system can help the management of patients with HF, further validations in larger samples and development for clinical applications are warranted.