Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2024
Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.
Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial intelligence were developed for invasive arterial blood pressure monitors. This study tested whether routine non-invasive monitors could also predict intraoperative hypotension using deep learning algorithms. ⋯ A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model can assist clinicians in preventing hypotension in patients undergoing surgery with non-invasive monitoring.
-
J Clin Monit Comput · Dec 2024
Heart rate variability as a predictor of intraoperative autonomic nervous system homeostasis.
The aim of the proof-of-concept study is to investigate the level of concordance between the heart rate variability (HRV), the EEG-based Narcotrend Index as a surrogate marker for the depth of hypnosis, and the minimal alveolar concentration (MAC) of the inhalation anesthetic sevoflurane across the entire course of a surgical procedure. This non-blinded cross-sectional study recorded intraoperative HRV, Narcotrend Index, and MAC in 31 male patients during radical prostatectomy using the Da-Vinci robotic-assisted surgical system at Mannheim University Medical Center. The degree of concordance was calculated using repeated measures correlation with the R package (rmcorr) and presented using the rmcorr coefficient (rrm). ⋯ HRV mirrors the trend of the Narcotrend Index used to monitor depth of hypnosis and the inhibitory influence of the anesthetic sevoflurane on the autonomic nervous system. Therefore, HRV can provide essential information about the homeostasis of the autonomic nervous system during general anesthesia. DRKS00024696, March 9th, 2021.
-
J Clin Monit Comput · Dec 2024
Imitating the respiratory activity of the brain stem by using artificial neural networks: exploratory study on an animal model of lactic acidosis and proof of concept.
Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from an animal model of metabolic acidosis. Data was collected from ten anesthetized, spontaneously breathing pigs divided randomly into two groups, one without dead space and the other with dead space at the beginning of the experiment. ⋯ The best architecture of ANN had 17 intermediate neurons; the best performance of the finally trained ANN had a linear regression with R2 of 0.99, an MSE of 0.001 [L/min], a B-A analysis with bias ± standard deviation of 0.006 ± 0.039 [L/min]. ANNs can accurately estimate ΔVM using the same information that arrives at the respiratory centers. This performance makes them a promising component for the future development of closed-loop artificial ventilators.