Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2024
ReviewAlternative sensor montage for Index based EEG monitoring. A systematic review.
The main objective of this systematic review is to assess the reliability of alternative positions of processed electroencephalogram sensors for depth of anesthesia monitoring and its applicability in clinical practice. A systematic search was conducted in PubMed, Embase, Cochrane Library, Clinical trial.gov in accordance with reporting guidelines of PRISMA statement together with the following sources: Google and Google Scholar. We considered eligible prospective studies, written in the English language. ⋯ Most studies had a low risk of bias but due to lack of information in one key domain of bias (Bias due to missing data) the overall judgement would be No Information. However, there is no clear indication that the studies are at serious or critical risk of bias. Bearing in mind, the heterogeneity and small sample size of the included studies, current evidence suggests that the alternative infraorbital sensor position is the most comparable for clinical use when the standard sensor position in the forehead is not possible.
-
J Clin Monit Comput · Aug 2024
Observational StudyShort-term mild hyperventilation on intracranial pressure, cerebral autoregulation, and oxygenation in acute brain injury patients: a prospective observational study.
Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. ⋯ Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.
-
J Clin Monit Comput · Aug 2024
Optimal bispectral index exists in healthy patients undergoing general anesthesia: A validation study.
Continuous cerebrovascular reactivity monitoring in both neurocritical and intra-operative care has gained extensive interest in recent years, as it has documented associations with long-term outcomes (in neurocritical care populations) and cognitive outcomes (in operative cohorts). This has sparked further interest into the exploration and evaluation of methods to achieve an optimal cerebrovascular reactivity measure, where the individual patient is exposed to the lowest insult burden of impaired cerebrovascular reactivity. Recent literature has documented, in neural injury populations, the presence of a potential optimal sedation level in neurocritical care, based on the relationship between cerebrovascular reactivity and quantitative depth of sedation (using bispectral index (BIS)) - termed BISopt. The presence of this measure outside of neural injury patients has yet to be proven. ⋯ Findings here carry implications for the adaptation of the individualized physiologic BISopt concept to non-neural injury populations, both within critical care and the operative theater. However, this work is currently exploratory, and future work is required.
-
J Clin Monit Comput · Aug 2024
Cerebral regional oxygen saturation as a predictive parameter for preoperative heart failure and delayed hemodynamic recovery in transcutaneous aortic valve implantation: a retrospective cohort study.
This study aimed to investigate the relationship of perioperative cerebral regional oxygen saturation (rSO2) with various preoperative clinical variables and hemodynamic changes during transfemoral transcatheter aortic valve implantation (TAVI) under general anesthesia. We retrospectively analyzed cerebral rSO2 values from left-hemisphere measurements obtained using near-infrared spectroscopy (O3™ regional oximetry) at five time points: pre-induction, the start of the procedure, the start of valve deployment, time of lowest cerebral rSO2 value during valve deployment, and the end of the procedure. ⋯ The patients who took longer to recover their systolic blood pressure to 90 mmHg after valve deployment with a balloon-expandable valve (group B) had lower cerebral rSO2 values during deployment compared to patients with faster recovery with balloon-expandable valve (group A) and with self-expandable valve (group C). Baseline cerebral rSO2 is associated with preoperative variables related to cardiac failure and function, and a significant decline during valve deployment may indicate a risk of prolonged hypotension during TAVI.
-
J Clin Monit Comput · Aug 2024
EditorialTowards the automatic detection and correction of abnormal arterial pressure waveforms.
Both over and underdamping of the arterial pressure waveform are frequent during continuous invasive radial pressure monitoring. They may influence systolic blood pressure measurements and the accuracy of cardiac output monitoring with pulse wave analysis techniques. ⋯ In case of overdamping, air bubbles, kinking, and partial obstruction of the arterial catheter should be suspected and eliminated. In the case of underdamping, resonance filters may be necessary to normalize the arterial pressure waveform and ensure accurate hemodynamic measurements.