Journal of clinical monitoring and computing
-
This work aims to introduce a new needle insertion simulation to predict the deflection of a bevel-tip needle inside soft tissue. The development of such a model, which predicts the steering behavior of the needle during needle-tissue interactions, could improve the performance of many percutaneous needle-based procedures such as brachytherapy and thermal ablation, by means of the virtual path planning and training systems of the needle toward the target and thus reducing possible incidents of complications in clinical practices. The Arbitrary-Lagrangian-Eulerian (ALE) formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. ⋯ The effect of the needle diameter and its bevel tip angle on the final shape of the needle was investigated using this model. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended, as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies.
-
J Clin Monit Comput · Aug 2017
Typical patterns of expiratory flow and carbon dioxide in mechanically ventilated patients with spontaneous breathing.
Incomplete expiration of tidal volume can lead to dynamic hyperinflation and auto-PEEP. Methods are available for assessing these, but are not appropriate for patients with respiratory muscle activity, as occurs in pressure support. Information may exist in expiratory flow and carbon dioxide measurements, which, when taken together, may help characterize dynamic hyperinflation. ⋯ This study illustrates that systematic patterns of expiratory flow and end-tidal CO2 are present in patients in supported mechanical ventilation, and that changes between these patterns can be identified. Further studies are required to see if these patterns characterize dynamic hyperinflation. If so, then their combination may provide a useful addition to understanding the patient at the bedside.
-
J Clin Monit Comput · Aug 2017
Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.
During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (CeMAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher CeMACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. ⋯ Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher CeMAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low CeMAC, and is closely temporally associated with return of consciousness.
-
J Clin Monit Comput · Aug 2017
Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation.
Non-hypotensive hypovolemia, observed during mild haemorrhage or blood donation leads to reflex readjustment of the cardiac autonomic tone. In the present study, the cardiac autonomic tone was quantified using heart rate and blood pressure variability during and after non-hypotensive hypovolemia of blood donation. 86 voluntary healthy male blood donors were recruited for the study (age 35 ± 9 years; weight 78 ± 12 kg; height 174 ± 6 cms). Continuous lead II ECG and beat-to-beat blood pressure was recorded before, during and after blood donation followed by offline time and frequency domain analysis of HRV and BPV. ⋯ The blood pressure variability showed an increase in the SDNN, CoV and RMSSD time domain measures in the post donation period. These results suggest that mild hypovolemia produced by blood donation is non-hypotensive but is associated with significant changes in the autonomic tone. The increased blood pressure variability and heart rate changes that are seen only in the later part of donation period could be because of the progressive hypovolemia associated parasympathetic withdrawal and sympathetic activation that manifest during the course of blood donation.
-
J Clin Monit Comput · Aug 2017
Reliability of cardiac output measurements using LiDCOrapid™ and FloTrac/Vigileo™ across broad ranges of cardiac output values.
Knowing a patient's cardiac output (CO) could contribute to a safe, optimized hemodynamic control during surgery. Precise CO measurements can serve as a guide for resuscitation therapy, catecholamine use, differential diagnosis, and intervention during a hemodynamic crisis. Despite its invasiveness and intermittent nature, the thermodilution technique via a pulmonary artery catheter (PAC) remains the clinical gold standard for CO measurements. ⋯ An F test revealed no significant difference in the widths of the LoA for both devices when sample sizes capable of detecting a more than two-fold difference were used. We found that both devices tended to underestimate the calculated CIs when the CIs were relatively high. These proportional bias produced large percentage errors in the present study.