Journal of clinical monitoring and computing
-
This work aims to introduce a new needle insertion simulation to predict the deflection of a bevel-tip needle inside soft tissue. The development of such a model, which predicts the steering behavior of the needle during needle-tissue interactions, could improve the performance of many percutaneous needle-based procedures such as brachytherapy and thermal ablation, by means of the virtual path planning and training systems of the needle toward the target and thus reducing possible incidents of complications in clinical practices. The Arbitrary-Lagrangian-Eulerian (ALE) formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. ⋯ The effect of the needle diameter and its bevel tip angle on the final shape of the needle was investigated using this model. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended, as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies.
-
J Clin Monit Comput · Aug 2017
Typical patterns of expiratory flow and carbon dioxide in mechanically ventilated patients with spontaneous breathing.
Incomplete expiration of tidal volume can lead to dynamic hyperinflation and auto-PEEP. Methods are available for assessing these, but are not appropriate for patients with respiratory muscle activity, as occurs in pressure support. Information may exist in expiratory flow and carbon dioxide measurements, which, when taken together, may help characterize dynamic hyperinflation. ⋯ This study illustrates that systematic patterns of expiratory flow and end-tidal CO2 are present in patients in supported mechanical ventilation, and that changes between these patterns can be identified. Further studies are required to see if these patterns characterize dynamic hyperinflation. If so, then their combination may provide a useful addition to understanding the patient at the bedside.
-
J Clin Monit Comput · Aug 2017
Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.
During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (CeMAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher CeMACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. ⋯ Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher CeMAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low CeMAC, and is closely temporally associated with return of consciousness.
-
J Clin Monit Comput · Aug 2017
Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation.
Non-hypotensive hypovolemia, observed during mild haemorrhage or blood donation leads to reflex readjustment of the cardiac autonomic tone. In the present study, the cardiac autonomic tone was quantified using heart rate and blood pressure variability during and after non-hypotensive hypovolemia of blood donation. 86 voluntary healthy male blood donors were recruited for the study (age 35 ± 9 years; weight 78 ± 12 kg; height 174 ± 6 cms). Continuous lead II ECG and beat-to-beat blood pressure was recorded before, during and after blood donation followed by offline time and frequency domain analysis of HRV and BPV. ⋯ The blood pressure variability showed an increase in the SDNN, CoV and RMSSD time domain measures in the post donation period. These results suggest that mild hypovolemia produced by blood donation is non-hypotensive but is associated with significant changes in the autonomic tone. The increased blood pressure variability and heart rate changes that are seen only in the later part of donation period could be because of the progressive hypovolemia associated parasympathetic withdrawal and sympathetic activation that manifest during the course of blood donation.
-
J Clin Monit Comput · Aug 2017
Acoustic sensor versus electrocardiographically derived respiratory rate in unstable trauma patients.
Respiratory rate (RR) is important in many patient care settings; however, direct observation of RR is cumbersome and often inaccurate, and electrocardiogram-derived RR (RRECG) is unreliable. We asked how data derived from the first 15 min of RR recording after trauma center admission using a novel acoustic sensor (RRa) would compare to RRECG and to end-tidal carbon dioxide-based RR ([Formula: see text]) from intubated patients, the "gold standard" in predicting life-saving interventions in unstable trauma patients. In a convenience sample subset of trauma patients admitted to our Level 1 trauma center, enrolled in the ONPOINT study, and monitored with RRECG, some of whom also had [Formula: see text] data, we collected RRa using an adhesive sensor with an integrated acoustic transducer (Masimo RRa™). ⋯ At [Formula: see text] 10-29 breaths per minute, RRa was more likely to be the same as [Formula: see text] and assign the same RTS. In predicting transfusion, features derived from RRa and RRECG gave AUROCs 0.59-0.66 but with true positive rate 0.70-0.89. RRa monitoring is a non-invasive option to glean valid RR data to assist clinical decision making and could contribute to prediction models in non-intubated unstable trauma patients.