Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2017
Automated, continuous and non-invasive assessment of pulse pressure variations using CNAP(®) system.
Non-invasive respiratory variations in arterial pulse pressure using infrared-plethysmography (PPVCNAP) are able to predict fluid responsiveness in mechanically ventilated patients. However, they cannot be continuously monitored. The present study evaluated a new algorithm allowing continuous measurements of PPVCNAP (PPVCNAPauto) (CNSystem, Graz, Austria). ⋯ A 15 % baseline PPVCNAPauto threshold discriminated responders with a sensitivity of 76% (95 % CI 53-92 %) and a specificity of 93 % (95 % CI 66-99 %). Area under the ROC curves for PPVCNAPauto was 0.91 (95 % CI 0.76-0.98), which was not different from that for PPVART. When compared with PPVART, PPVCNAPauto performs satisfactorily in assessing fluid responsiveness in hemodynamically stable surgical patients.
-
J Clin Monit Comput · Jun 2017
Comparative Study Observational StudyEffect of patent ductus arteriosus and patent foramen ovale on left ventricular stroke volume measurement by electrical velocimetry in comparison to transthoracic echocardiography in neonates.
This prospective single-center observational study compared impedance cardiography [electrical velocimetry (EV)] with transthoracic echocardiography (TTE, based on trans-aortic flow) and analyzed the influence of physiological shunts, such as patent ductus arteriosus (PDA) or patent foramen ovale (PFO), on measurement accuracy. Two hundred and ninety-one triplicate simultaneous paired left ventricular stroke volume (LVSV) measurements by EV (LVSVEV) and TTE (LVSVTTE) in 99 spontaneously breathing neonates (mean weight 3270 g; range 1227-4600 g) were included. For the whole cohort, the mean absolute LVSVEVwas 5.5 mL, mean LVSVTTEwas 4.9 mL, resulting in an absolute Bland-Altman bias of -0.7 mL (limits of agreement LOA -3.0 to 1.7 mL), relative bias -12.8 %; mean percentage error MPE 44.9 %; true precision TPEV33.4 % (n = 99 aggregated data points). ⋯ In neonates with shunts (PDA and/or PFO; n = 67): mean LVSVEV5.8 mL, mean LVSVTTE5.0 mL, bias -0.8 mL (LOA -3.1 to 1.5 mL), relative bias -14.8 %, MPE 41.9 %, TPEV29.3 %. Accuracy was affected by PDA and/or PFO, with a significant increase in the relative difference in LVSVEVversus LVSVTTE: Subjects without shunts -2.9 % (n = 91), PFO alone -9.6 % (n = 125), PDA alone -14.0 % (n = 12), and PDA and PFO -18.5 % (n = 63). Physiological shunts (PDA and/or PFO) in neonates affect measurement accuracy and cause overestimation of LVSVEVcompared with LVSVTTE.
-
Understanding the use of patient monitoring systems in emergency and acute facilities may help to identify reasons for failure to identify risk patients in these settings. Hence, we investigate factors related to the utilization of automated monitoring for patients admitted to an acute admission unit by introducing monitor load as the proportion between monitored time and length of stay. A cohort study of patients admitted and registered to patient monitors in the period from 10/10/2013 to 1/10/2014 at the acute admission unit of Odense University Hospital in Denmark. ⋯ Higher levels of severity were related to higher degrees of monitoring, but being admitted to the surgical wing reduce how much patients were monitored, and periods with many concurrent patients lead to a small increase in monitoring. We found a significant variation concerning how much patients were monitored during admission to an acute admission unit. Our results point to potential patient safety improvements in clinical procedures, and advocate an awareness of how patient monitoring systems are utilized.