Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2014
Clinical TrialNon-invasive cardiac output evaluation in postoperative cardiac surgery patients, using a new prolonged expiration-based technique.
The gold standard methods to measure cardiac output (CO) are invasive and expose the patient to high risks of various complications. The aim of this study is to assess an innovative non-invasive method for CO monitoring in mechanically ventilated patients after cardiac surgery and its agreement with values obtained by thermodilution technique. Continuous monitoring of respiratory gas concentrations and airflow allows the estimation of CO through a newly developed algorithm derived from a modified version of the Fick equation. ⋯ COK shows a mean percentage error of 34 %. In stable mechanically ventilated patients, undergone cardiac surgery, the proposed method is reliable if compared to the thermodilution. Considering the non-invasivity of the technique, further evaluations of its performances are encouraged.
-
J Clin Monit Comput · Dec 2014
Evaluation of a computer program for non-invasive determination of pulmonary shunt and ventilation-perfusion mismatch.
We describe a three-compartment model (shunt and two perfused compartments) to analyse the relationship between inspired oxygen (FIO2) and arterial oxygen saturation (SaO2) in terms of pulmonary shunt and ventilation-perfusion ratio (VA/Q). The program was tested using 24 exact datasets, each with six pairs of FIO2 and SaO2 data points with known VA/Q and shunt, generated by a complex calculator of gas exchange. Additional datasets were created by adding noise and rounding the exact sets, and by reducing the number of data points per dataset. ⋯ It is probably advantageous to correct for foetal haemoglobin in neonatal datasets. Analysis of FIO2 versus SaO2 datasets using a three compartment model provides accurate estimates of shunt and VA/Q when arterio-venous difference in oxygen content is known. The estimates may have value as objective measures of gas exchange, and as a visual guide for oxygen therapy.
-
J Clin Monit Comput · Oct 2014
Evaluation of techniques for estimating the power spectral density of RR-intervals under paced respiration conditions.
Heart rate variability (HRV) analysis is increasingly used in anaesthesia and intensive care monitoring of spontaneous breathing and mechanical ventilated patients. In the frequency domain, different estimation methods of the power spectral density (PSD) of RR-intervals lead to different results. Therefore, we investigated the PSD estimates of fast Fourier transform (FFT), autoregressive modeling (AR) and Lomb-Scargle periodogram (LSP) for 25 young healthy subjects subjected to metronomic breathing. ⋯ Above 7 breaths per minute, all methods showed a significant increase in LF/HF ratio with increasing BF. On average, the RMSRE of FFT was lower than for LSP and AR. Therefore, under paced respiration conditions, estimating RR-interval PSD using FFT is recommend.