Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2022
Randomized Controlled Trial Observational StudyThe outcomes of using high oxygen concentration in pediatric patients.
Oxygen reserve index, available as part of Masimo Rainbow SET pulse oximetry, is a noninvasive and continuous variable intended to provide insight into a patient's oxygen status in the moderate hyperoxic range (PaO2 > 100 and ≤ 200 mm Hg), defined as a patient's oxygen "reserve". When used in conjunction with pulse oximetry, ORi extends the knowledge on a patient's oxygen status providing clinically important information helping to prevent hyperoxemia and hypoxemia. There are limited data on patients undergoing craniosynostosis surgery. ⋯ In Group 1, ORi values were significantly higher when compared to group 2 at baseline (0.86 ± 0.21 vs 0.45 ± 0.32, p = 0.001), one minute (0.61 ± 0.24 vs 0.27 ± 0.21, p = 0.001), and 5 min (0.34 ± 0.31 vs 0.10 ± 0.13, p = 0.033). High inspired oxygen concentration during induction of anesthesia in pediatric patients is associated with higher levels of ORi. Therefore, ORi may provide the means to safely reduce the inspired oxygen fraction during inhalational induction in paediatric patients.
-
J Clin Monit Comput · Oct 2022
Non-invasive capnodynamic mixed venous oxygen saturation during major changes in oxygen delivery.
Mixed venous oxygen saturation (SvO2) is an important variable in anesthesia and intensive care but currently requires pulmonary artery catheterization. Recently, non-invasive determination of SvO2 (Capno-SvO2) using capnodynamics has shown good agreement against CO-oximetry in an animal model of modest hemodynamic changes. The purpose of the current study was to validate Capno-SvO2 against CO-oximetry during major alterations in oxygen delivery. ⋯ CO-oximetry was comparable to the performance of fiberoptic SvO2 vs. CO-oximetry. Capno-SvO2 appears to be a promising tool for non-invasive SvO2 monitoring.
-
J Clin Monit Comput · Oct 2022
Randomized Controlled TrialThe effect of different flow levels and concentrations of sevoflurane during the wash-in phase on volatile agent consumption: a randomized controlled trial.
The standard procedure for low-flow anesthesia usually incorporates a high fresh gas flow (FGF) of 4-6 L/minute during the wash-in phase. However, the administration of a high FGF (4-6 L/min) increases the inhaled anesthetic agent consumption. This study was designed to compare the sevoflurane consumption at 2 rates of flow and vaporizer concentration during the wash-in period. ⋯ The anesthetic agent consumption during the wash-in phase was approximately 3 times lower with the administration of sevoflurane at 1 L/minute FGF than the use of 4 L/minute FGF.