International journal of molecular medicine
-
A key aspect of intestinal ischemia/reperfusion (I/R) injury is the increased occurrence of apoptotic cell death in the gut. Insufficient clearance of apoptotic cells leads to increased inflammation and impaired tissue repair. Our recent studies have shown that administration of milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a crucial molecule for apoptotic cell clearance, reduces apoptosis and inflammation under various disease conditions. ⋯ Intestinal levels of VEGF decreased significantly at 4 h after gut I/R. rmMFG-E8 treatment significantly increased intestinal VEGF levels. Thus, enhancing apoptotic cell clearance by rmMFG-E8 mitigates bacterial translocation, inhibits neutrophil infiltration and promotes tissue repair after gut I/R. Enhancing apoptotic cell clearance can be a novel concept in the treatment of gut I/R injury.
-
Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. ⋯ The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation.